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ABSTRACT
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Thesis title: Riemann surfaces and Complex Analytic Geometry

Thesis supervisor: Dr. Sushil Gorai

Date of thesis submission: May 2025

The goal of this thesis is to study some key aspects of the theory of 1-complex
manifolds called ” Riemann surfaces” that are also 2-smooth manifolds. Riemann sur-
faces are nicer to study in the sense that behaviour of holomorphic functions on the
complex plane can be translated onto them upto some degree, this makes their theory
slightly less different and less challenging than higher dimensional complex manifolds.
In general, people try to study Riemann surfaces as compact Riemann surfaces and
non-compact Riemann surfaces(Open Riemann surfaces) since the phenomenon ob-
tained as such vary depending upon this choice. We have studied the behaviour
of holomorphic mappings of Riemann surfaces, which when restricted to compact
connected settings give a quantification by Riemann-Hurwitz formula[4]. Along the
way, for broader techniques on Riemann surfaces we have worked with holomorphic
line bundles that allows us to use L? theory on the space of their sections[4]. These
techniques further allows one to probe into the phenomenon of analytic continuation

which is also studied through del-bar problem on domains in C"[4].
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Chapter 1

Riemann Surfaces

1.1 Introduction

The theory of functions of several complex variables is quite varied and interesting
and various nice properties and phenomenon can be directly generalized from the
theroy of one complex variable, however for studying at more general levels and
better disguised phenomenon theory of complex variables has been generalized to
somewhat special domains called ”complex manifolds”. Here we deal with a complex
manifold of complex dimension n=1 called a Riemann surface where theory of one

complex variables has much nicer generalizations.

Holomorphic Function(Definition)- Let 2 C C™ be an open set. We say a complex

0{ =0 on  for
822‘

valued function f : 2 — C is holomorphic in several variables if

i=1,2,.n.
Holomorphic Mapping(Definition)- Let 2 C C™ be a open set. We say F : Q —
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C" is holomorphic mapping if each component functions F; : {2 — C are holomorphic

OF; .
ie. a—z =0fori,j €{1,2,..n}.

Biholomorphic Mapping(Definition)- Let €y, Qy C C™ be two open sets. We say

a holomorphic mapping F : € — )y is a biholomorphism if F' is bijective and

F~1:Qy — Q, is also holomorphic in several complex variables.
Let X be a Hausdorff topological space.

Complex Chart(Definition)- Let U C X be a open set and ¢ : U — C" be a

homeomorphism. We say the pair (U, ¢) is a complex chart.

Compatibility of coordinate charts(Definition)- Let (U, ¢) and (V) be two com-
plex charts such that U NV # ¢. We say that the complex charts are compatible if
Yol p(UNV)— (UNV)is a biholomorphic mapping.

Complex Atlas(Definition)-
We say a collection of complex charts Ax = {(¢a,Us)|a € I} is a complex atlas if:
i) Upe; Ua =X
ii)(¢a, Uy) and (¢g, Ug) are compatible for any «, 5 € I

Complex Manifold(Definition)- Let X be a topological Hausdorff space, if X
admits a complex atlas Ay we say X is a complex manifold of complex dimension

n.

Riemann surface(Definition)- A complex manifold of complex dimension 1 is

called a Riemann surface.



1.2 Construction of some Compact Riemann sur-

faces

1. The Riemann Sphere(P')-
Consider the set X = {(u,v,w) € R*u? +v? + w? = 1} C R3[4]. We know that X
is a topological Hausdorff space in the subspace topology in R3. Furthermore, it is

compact as well.

Denote the north pole of the sphere as ey = {(0,0,1)} and south pole as eg =
{(0,0,—1)}. Take the stereographic projection about ey which sends a point on a
sphere say (u,v,w) € X to a point on the plane say (x,y,0)

By the equation of straight line passing through ey and joining (u,v,w) and

(z,y,0) we get that
r—0 y—-0 0-1
u—0 v—0 w-—1

and (u,v,w) € X goes to (-4, %) € R?

l-w’ 1—w

Similarly taking stereographic projection by eg,

(=1

(=1)

J— _O_
=

we get that (u,v,w) € X goes to (347, -57) € R?

Let Uy = X —{(0,0,1)} and Us = X — {(0,0,—1)} be two open sets in X. We
define ¢ : Uy — C and ¢g : Us — C as follows:

U+ v

on(u,v,w) = T



U —
1+ w

Os(u, v, w) =

Since w # 1 for (u,v,w) € Uy and w # —1 for (u,v,w) € Us, ¢y and ¢g are
well-defined.

Let z = x4+ iy = ¢n(u, v, w), we want to find (u,v,w) = (u(z,y),v(x,y), w(z,y))

We have that © = z(1 — w) and v = y(1 — w), furthermore since (u,v,w) € X
u? + v +w? =1

w? =1—(2* +y*)(1 —w)?
w? = (1-2* =) (1 —w)’

(2 + v+ Dw? = 22> + ) w+ (2* + 9 — 1) =0

We get that,

200 +97) £ VA + 92 — 4@+ + (@2 + 2 - 1)
a 2(z +y* + 1)

?+y*+1
r?+y*+1

2+ -1 21 _ 2y

On Uy we will have w =

U= ———-——andv=—5———
2+ y?+1 2?2+ y?+1 24 y?+1

—1 . _ 2z 2y 24y —1 : -1 :
We define ¢ (x +iy) = (m2+y2+1, T r2+y2+1) and since ¢, is well-defined,

¢n is bijective. By componentwise continuity, we can see that both ¢y and ¢]_V1 are

continuous. Hence ¢y : Uy — C is a homeomorpism.

Consider the transition map from coordinate chart (Uy, ¢n) to coordinate chart

4



(Us, ds), ¢s0 on' : dn(Un NUs) — ¢s(Ux N Us) is given by

2 2y ?+y? -1 T — iy
e R e R e

z:m—i—iy—)(

Since o5 (Un NUs) = ¢ps(Uy N Ug) = C — {0} the above transition function is

holomorphic with holomorphic inverse.

Note that Uy UUg = X, so the complex atlas {(¢n,Uy), (¢s,Us)} gives a bi-

holomorphic structure on X. Hence X is a Riemann surface.

2. The Complex torus
Let w; and wy € C be two R-independent vectors, we look at the free module gen-
erated by them L = {aw; + bwsla,b € Z}[4]. Note that L C C is a commutative
subgroup in C.
We define X to be the quotient group of L in Ci.e.X = C/L. So there exists a natu-
ral projection map 7 : C — X given by z — z+ L which is a group homomorphism.

Note that 7 is surjective.

We say U C X is open if 771(U) is open in C. This gives quotient topology on
X via the quotient map 7. Thus, 7 : C — X is a continuous map. Furthermore, we
claim that 7 is an open map.

Let U € C be an open set. Then, 7~ (x(U)) = | | (U 4 w)

weL
Since U 4 w is open in C, for all w € L, we have that w(U) is open.

Now, choose € < 3.min{|wi|, |wo|} then D(0,2¢) N L = {0}.
Let z € C we claim that D(z,¢) ND(z,¢) + w = ¢, for all w € L — {0}. If 2/ €

D(z,6) ND(z,€) + w, then |2/| < € and |2 + w| < € implying |w| = |[w + 2/ — 2| <

5



|lw+ 2’| — |2'| < 2e. Hence, w € D(0,2¢) N L so w = 0.

We define 7, := mlpe.e) : D(2,€) = 71(D(z,¢€)) Since n; ! (7(D(z,€))) = D(z,¢), it

is bijective hence a homeomorphism.
The collection A = {(7(D(z,¢€)), 7, )|z € C} is an atlas for X.

Theorem- Let X be a Riemann surface, then X is an orientable 2-manifold.
Proof- Let (U, ¢) and (¢, V') be two coordinate charts. Then, o¢™! : ¢(U) — (V)

is a biholomorphism.[4]
Det(D(poop ™)) =|(pod ™ )*?>0onUNV.

Hence, X is an orietable 2-manifold.



Chapter 2

On holomorphic mappings of

Riemann Surfaces

Holomorphic Mapping (Definition)-

Let X and Y be Riemann surfaces. We say F': X — Y is holomorphic at p € X iff 3
coordinate charts (U, ¢) at p € X and (¢, V) at F(p) s.t. poFo¢™t: ¢p(U) — (V)
is holomorphic on ¢(U).

We say F': X — Y is holomorphic on X if F is holomorphic at every point of X.

2.1 Properties of holomorphic mappings

Open Mapping Theorem- Let X, Y be connected Riemann surfaces and F' : X —

Y be a non-constant holomorphic mapping. Then, F' maps open sets to open sets.[4]



Proof-Let U C X be open we want to show that F(U) is open. Consider y €
F(U), then 3z € U such that F(z) = y. Let (¢,U’) and (¢, V') be coordinate charts
at z € U and y € V, then the map o Fo¢~!: ¢(U") — (V) is holomorphic on
o(U).

Claim: F = Yo F o¢™!is non-constant on ¢(U)

Suppose it’s not true, then F' is a constant map on U. This implies that U is both
open and closed. By connectedness of X, U = X. This implies that F' is constant on
X, hence a contradiction. Let V' be a connected neigbourhood of ¢(U) containing
z, then by open mapping theorem on V, F : V — F(V) is an open mapping. Since,
F(V)n F(U) is an open neighbourhood of y in F(U). This implies that y is an

interior point, since y is arbitrary F'(U) is open.

Theorem- Let X and Y be Riemann surfaces, where X is connected and F' :
X — Y is a non-constant holomorphic mapping. Then, for each y € Y, F~1(y) is a
discrete set in X.[4]
Proof-
Let y € Y ,assume F~1{y} # ¢, otherwise it is trivial. Suppose it is not true i.e.
there exists x € F~!(y) such that x is a limit point of the set F~!{y}.
Since F is holomorphic, 3 (¢, U,) and (¢, V) such that ¢y o Fo ¢~ : ¢(U,) = ¥(V,)
is a holomorphic function. By translation we can choose (¢, V) such that ¢ (y) = 0.
Since z is a limit point of F~!'{y} 3 a sequence {z,} in U, such that x,, — z. This
implies ¢(x,) converges to ¢(x), where o Fo¢™(f(x,)) = 0 and po Fod~(p(x)) =
0. Hence, o Fo¢™' =0 on ¢(U).
This implies U is an open and closed set in X, since X is connected, U = X and F

is a constant function this contradicts the fact that F' is non-constant.



Normal Form Theorem-
Let XY be Riemann surfaces and F' : X — Y be a holomorphic mapping between
them. Let x € X, then 3 coordinate charts (U, ¢) at v € X & (V,4) at F(z) and a
positive integer m,, such that :
i) 6(x) = 0 and $(F(z)) = 0
ii)yoFogp™t:p(U)— (V) is given by o Fopl(z) = zm=
iii) The integer m, is unique for each z € X [4]
Proof-
Let x € X and y = F(x) € Y, then there exists coordinate charts (U, ¢) at x
and (V1) at y such that ¥ o F o ¢! : ¢(U) — (V) is holomorphic. By setting
¢ (x) = ¢p(a') — ¢'(x) and ' (v') = ¥(y') — ¥(y) we can choose coordinate charts
such that F =1/ o Fo¢™': ¢'(U) — ¢/(V') has a zero at z =0 € ¢/ (U)

This implies that 3 a positive integer m such that F(z) = z™G(z) for all z € ¢/(U)
where G : ¢(U) — C is a holomorphic function such that G(0) # 0.

By continuity of G, there exists r > 0 such that G(z) # 0 on D(0,r) C ¢'(U).
Hence, G(z) = ef1®) for some holomorphic function H on D(0,7). It follows that

F : D(0,7) = ¢(V) can be written as z — zmeH(®.

Now, define ¢(z) = zexp <%) for z € D(0,r)

Note that ¢(z) = ewp(%) + ze(%)%(z) and ¢(0) = 1.

Since ¢ is non-zero at z = 0, by inverse function theorem 3 U’ C D(0,r) such that

¢ is invertible on U’.
Y oFo(¢ " od )(r)=F(¢ () =", forall T € H(U")
ii) Let (¢1,Ur) ,(¥1, V1) and (@2, Us),(109, V) be two coordinates satisfying Normal

9



Form Theorem,i.e. /F\'I:@bl oFo¢y:2z—2M andﬁ; : ¢20FO¢2_1 Dz — M2

Note that Fy = oyt oEongoqﬁl_l. Denote hy = ¢ 0 ¢; " and hy = ¢y oyt

2™ = hy((h1(z))™?), By power series expansion we can see that 2™ = (> ‘;—?(Z b’;}—fp)m”) =
q p

VDY b”;—i_l)m?q.This implies that m; < ma.
q p

Since, h; and hy are biholomorphic, their inverse exists say ¢g; and g for E =

go © /Fvl o g1 we will get my < my.Hence, m; = mo.

Multiplicity (Definition)- Let I : X — Y be a holomorphic mapping of
Riemann surfaces. Let x € X, the integer m, is called the multiplicity of F' at
z € X denoted by Mult,(F).

Note that since F' is holomorphic, Mult,(F) > 0.

Ramification Point(Definition)- Let F' : X — Y be a holomorphic mapping

of Riemann surfaces. We say = € X is a ramification point iff Mult,(F) > 2.

Branch Point(Definition)- Let /' : X — Y be a holomorphic mapping of Rie-
mann surfaces. We say y € Y is a branch point if for some z € F~Yy},Mult,(F) >
2.

Theorem- Let X and Y be connected Riemann surfaces and F': X — Y be a
holomorphic mapping.Then,
i)The set of ramification points R(F') C X is discrete.
ii)The set of branch points B(F') C Y is discrete.

Proof- i)Let « be a limit point of R(F) and (U, ), (Vr(),%) be coordinate
charts s.t. o F o ¢ 1(z) = 2™ on ¢(U,) with m, > 2. Then, 32’ € U, such that
Mult,/(F) > 2. Denote y = F(z')

10



Since X is Hausdorff, for each 7 € F~!(y’) we can choose neighbourhood Uz such
that F~1(y') N Uz = {Z}. By Normal Form Theorem at Z and y’ for some y” € V,,,
F~1(y") N Uz has mz many preimages in Us.

[F~ Yy NUy = > |F~Y(y")| N Uz > 2+ Mult,(F) —1

z€F~1(y")NU,
This is a contradiction since |F~(y")| N Uy = Mult,(F)
ii)The branch points are precisely the image of ramification points, since F' is

continuous R(F) is discrete.

11



2.2 Holomorphic Mappings of Compact and Con-

nected Riemann surfaces

Theorem- Let X and Y be connected Riemann surfaces and F' : X — Y be a
non-constant holomorphic mapping. If X is compact, then Y is compact and F is
surjective. [4]

Proof- Since F'is a non-constant holomorphic mapping of connected Riemann sur-
faces it is an open map. This implies that F'(X) is open in Y. Furthermore, since X
is compact F'(X) is compact from continuity of F. Since Y is a connected set F'(X)

is non-empty F(X) =Y. Hence, F is surjective and Y is compact.

Theorem- Let X and Y be compact, connected Riemann surfaces and
F: X — Y is a holomorphic mapping on X. Then, Deg(F) : Y — Z defined by
Deg(F)(y) = > Mult,(F) is constant.[4]
)

z€F~1(y
Proof-
Let Y, = {y € Y|Deg(F)(y) > n)} = Deg(F) *[n, o) ,for some n € N.
We want to show that Y,, is both open and closed.
i) Let y € Y, and # € F~(y) ,Then by Normal form theorem 3 coordinate charts
(U,¢) at x and (V,9) at y s.t. Yo Fog™t:¢(U) — (V) is given by z — 2™ and
U(y) = 0= o().

Let ¢ € V, then since ¢ : U, — ¢(U,) is bijective
[FH ) NUs| = [(WoFo¢ )My (y))| = me = (o Fod™)7H0)| = [F~H(y)NUs|.
Then, by definition of degree of a holomorphic map

Deg(F)) = X MultF)2 5 12 NP 00| = Y

z€F~1(y") zeF—1(y")

12



k
2 2 |F7H () N Us| = Deg(F)(y) 2 n.
Since Deg(F(y)) > n, we have that Deg(F(y')) > n ,for all y/ € V.

ii)Let {yx}r>1 be a sequence in Y;, such that yx — y in Y. We want to show that
yeY,ie Deg(F)y)= >, Mult,(F)>n.

z€F~1(y)

Remove the branch points from the sequence y; so that Mult,(F) = 1, for all
x € F~'(yg). Since Deg(F)(yx) > n,it implies that F~(yx) D {14, Tok, - Tnk}-
Since {zix}r>0 are sequences in X, 3 convergent subsequences say {zi,};>0 con-
verging to z; € X, for all : = 1,2, ...n.

Furthermore, F(x;) = im0 F'(Zig,) = limg 00 yp = y, for all i = 1,2..n

Case I- Suppose all zs are different. Then,

Deg(F)(y)= 5 Multy(F) > 3 Multy,(F) > n

z€EF~1(y)
Case II- Let j-many of x}s are same say x;, = x4, = ... =13, = T

Deg(F)(y) = %2 Multy(F) > 3\ Mult,,(F) + Mult,(F)

vEF—1(y)
By Normal Form Theorem at x € X, 3 coordinate charts (U,, ¢) and (V,,, 1) with
V, C F(U,) such that o F o ¢~ : ¢(U,) — (V,) is given by z — 2™
Since z is a limit point in X, 3N € Ns.t. x;, € U, Jforall j > Nyi=1,2,.., 5. This
implies j < [F~!(yy) N U,| = m. Hence,
Deg(F)(y) = Y Multy(F) > nzj Mult,, (F) + Mult,(F) > n.

zeF—1(y)
By definition, Y,, C Y,,_;. Since Y is connected, Either Y, = ¢ or Y,, =Y. Let
y € Y with Deg(F)(y) = k, then y € Y}, but y & Yi,1.This implies that Yy, = ¢
and Y, =Y for all n < k.

13



This means Deg(F)(y) > k, for all y € Y and Deg(F)(y) < k for all y € Y.
Hence, Deg(F)(y) =k J(for ally € Y.

Theorem(Riemann-Hurwitz Formula)-
Let X and Y be compact and connected Riemann surfaces & F': X — Y is a holo-

morphic mapping. Then,

29(X) — 2= (29(Y) — 2)Deg(F) + Y _(Mult,(F) — 1)

zeX

[4]

Proof- Let Fy = {T;|i = 1,2,..,n} be a triangulation for Y[1]. Let y € B(F)be a
branch point, then y € T;,, for some ig = 1, ..n; If y € Int(T}) join y with each vertex
of Tyy. This decomposes Tjy into three triangles. If y € Edge(T}), then y € Ty NTj

joint y with vertices of Ty and T;;.

Hence,we can assume a tringulation exists such that all ramification points are

vertices in the triangulation.

If there exists y1, y2 € B(F) such that there is an edge [y1, y2]|between them, then
choose a point ¥ € [y1, o] and join it with the vertices of the triangle it is contained

in. Hence, this implies that there is no edge with both points as ramification points.

Suppose the tringulation of Y has V' vertices, E edges and F' faces.

Since d = Deg(F)(y) = Y. Mult,(F). For y € V,, JF~'(y)| = d and for

zeF~1(y)
y eV |F Yy =d— 3 (Mult,(F)—1).

zeF~1(y)

14



The no of vertices in the pullback triangulation is given by[4]:

W=> [Fl'yl+> [F ')

yeEVY yeV,
W=>"d+Y (d- Y (Mult,(F)-1))
yeVy yeV, zeF—1(y)

W=dv— > (Mult,(F)—1)

z€F~1(y)

By definition of Euler Characteristic,
X(X)=V(X)-E(X)+F(X)=W—dE+dF =d(\V-E+F)+ > (Mult,(F)—1)

ze€F—1(y)

X(X)=dx(Y)+ > (Multo(F) —1)

zeF~1(y)

BY theorem on classification of orientable surfaces[2],

(2-29(Y)) = d2 = 20(X)) + ¥ (Mult,(F) — 1), where g(X),g(Y) are
zeF~1(y)
genuses of the surfaces X, Y.
Ramification Degree-

Let F': X — Y be a non-constant map of compact and connected Riemann surfaces.

We say that the integer R(F) = > (Mult,(F) — 1) is the Ramification degree of

rzeX
the non-constant holomorphic map of Riemann surfaces.

Note that R(F') is an even integer.

Corollary-

Let F': X — Y is a non-constant holomorphic map of compact connected Riemann

surfaces. Then, g(Y) < g(X).[4]

15



Proof- Since Mult,(F) > 0, we get Deg(F') > 0, R(F) > 0. By Riemann-Hurwitz
formula, 2¢(X) —2 > (2¢9(Y) — 2)Deg(F') > 29(Y') — 2, This implies g(X) > g(Y).

Corollary(Sufficient condition for a unramified map)-
Let X,Y, F be as above. If g(X) = g(Y), then F is unramified. [4]
Proof- Put ¢(X) = ¢(Y) in the Riemann-Hurwitz formula we get that R(F') = 0.

Corollary(Necessary condition for a unramified map)-
Let X,Y,F: X — Y be as above. If F' is unramified, then [4]
Ng(X)=1 = g(Y)=1
ii) If g(X) > 1 and Deg(F) > 1, then g(Y) > 1 and Deg(F)|(g(X) — 1).
Proof-

By rearranging the Riemann-Hurwitz formula,

) 9) | DeglB)~1__R(F)
J Deg(F) Deg(F) 2Deg(F)

Put R(F) =0,
) = g(X) | Deg(F)—1
P Deg(F) " Deg(F)

For g(X) > 1, g(Y) > 1and for g(X) =1, g(Y) =1

Corollary(On holomorphic covering maps to Riemann sphere)-

Let X be a compact and connected Riemann surface and F : X — P! is a non-
constant holomorphic map. If F is unramified, then F' is necessarily an isomor-
phism.[4]

Proof-

Putting R(F) = 0 and g(Y) = 0 in the Riemann-Hurwitz formula, we get Deg(F') =
1 — ¢g(X).This implies that Deg(F') < 1 since Deg(F) > 1. Deg(F) =1 and F is an

isomorphism of Riemann surfaces.

16
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Chapter 3

Complex Line Bundles on a

Riemann Surface

3.1 Introduction

Complex Line Bundle(Definition)-

Let L and M be smooth manifolds. We say that L along with a map 7 : L — M is
a complex line bundle if:

i) For every p € M there exists U, C M and Fy, : 7 '(U,) — U, x C defined as
v = (w(v), fu(v)) is a diffeomorphism.

ii) If U,, Up satisfies (i), s.t. U, N Uz = ¢, then g,5 : U, N Us — C* where,
Fy, o Fljﬁl : (UaNUg) x C— (U, NUg) x Cis given by (z,\) = (2, gap(N))

@

Note that the fiber L, = 7= (z) = {#} x C is isomorphic to C as a complex

vector space.
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The 1-cocycle condition-
Consider U, Ug, U, C M satistying (i) and U, N Ug N U, # ¢, then,
(Fu, o Fy,) o (Fy, 0 Fi') o (Fy, o ') = Id on (U, NUs N U,) x C.
This implies that gag(x) - gs,(z) - gya(z) =1 for each x € U, N Uz N U, [4]

Morphism of Complex Line Bundle(Definition)-
Let (L, 7) and (L', ") be two complex line bundles over M. We say amap F' : L — L'
is a morphism of complex line bundles if :
)moFom=1idyx

i)F, =F|, : Ly — L is a map of complex vector spaces.

Isomorphism of Complex Line Bundles(Definition)-
We say that two complex line bundles (L, 7) and (L', ©’) over the M are isomorphic if
3 complex line bundle morphisms F': L — L' and G : L' — L such that F'oG = Id;,
and Go F = Id;,.

3.2 Constrution of a complex line bundle

Proppsition-(Primitive construction of complex line bundle)

Let {U,|la € I} be an open cover of M and {gas : Uy N Us — C*|a, f € I} be a
collection of transition data satisfying the 1-cocycle condition. Then,

i) 3 a C-line bundle (L{gas}, ™) such that the transition data of L is {gas}-

ii)If (L, ) is a complex line bundle with a trivializing cover {U,} and transition data

{9ap}, then L = L{gas} [4].
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Proof-
Consider the space Y = | | U, x C x {a} equipped with disjoint union topology. We
define a relation ~ on Yaf); (x,z,a) ~ (x,w, B) iff w= gas(x)z.
i)Reflexivity- (z, z,a) ~ (z, 2, ) since z = 1.2 = goa(z)2
ii) Symmetry- If (z, 2, ) ~ (z,w, ) then z = g,5(z)w which implies z = gg,(2)w
since gqp(z) € C*
iii) Transitivity- Let (z, z, @) ~ (z,w, B) ~ (x,T,7), then T = gz, (2)w = g3,()gap(z)z.
Since {gap} satisfies the 1-cocycle condition g.s()gsy(%)gya(z) = 1. This implies

that 7 = goy(2)z Hence, (z,2,a) ~ (z,7,7).

Hence ~ is an equivalence relation over Y. We define L{gns} =Y/ ~
The quotient map ¢ : Y — Y/ ~ given by (x, z, ) — [(x, z, )] induces the quotient

topology on L{gas}.ie. U C Y/ ~ is open iff ¢~(U) is open in Y.

We define the map 7 : L{gag} = M by [(z, z,a)] =

Then ¢ (774 (U,)) = || (UaNUp) x C x {B} where J = {8 € I|U, N Uz # ¢}.
Bed
Since each of these are open, 7—!(U,) is open in L{g.3}. Furthermore, we have

U 7Y (Uas) = L{gas}. Hence, {7~ 1(U,)|a € I} forms an open cover of L{gas}
acl

We define Fy,, : 71 (Uy,) — Uy x C x {a} by [(z, 2z,a)] — (x, 2,a) by definition,
Fy, is bijective. For V C U, x Cx {a}(open), ¢ (F;;'(V)) = ] VN(UsxCx{B}).

geJ
This shows that £y, is a continuous map.

For U C Y (Ua)(open) ¢ 1(U) = s, 7(U N Us) x Q x {B} for some Q C

C(open). Now, Fy (U) =m(U) x Q x {a}. Hence, Fy, is an open map.
Now, Fy, 0o Fi' : (UyNUs) x C x {a} = (U, NUg) x C x {B} is given by
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(z,2,0) = [(2, 2,0)] = [(2, gap(2)z, B)] = (2, gsa(7)2, B)

Since Fy,0F;;, is linear in both variables it is a diffeomorphism. Hence (77(Us,), Fu,,)
gives a collection of smoothly compatible coordinate chart on L{g.s} giving it a

smooth manifold structure.

ii) Let (L, 7) be another complex line bundle with trivializing cover U, and tran-
sition data {gas}. Define F': L{gas} — L by [(z,z,a)] = F;(z,z) where Fy, is

the local trivialization of L on U,.

Since Fy, o Fja(z,2) = (x, gap(x)z) we get that F'(z,2) = Fgﬁl(a:,gag(w)z)
F([(z, z,a)]) = F([(x, gap(x)z, B)]) hence, F is well defined.

Flr=!(z) sends [(z,z,a)] + c[(z,w,®)] = [(z,z + cw,a)] = F; ' (z,z + cw) =

Fy Nz, 2) + cF; (z,w) for ¢ € C. Hence, F is C-linear in each fiber.

Similarly, the map defined as G : L — L{gas} as v, — [(z, fu,(v2), )] is a
morphism of complex line bundles where Fy, : 7~ 1(U,) — U, x C is the local

trivialization. Since F' and G are inverses of each other, L = L{g.z}

3.3 Sections of Complex Line Bundles

Section(Definition)- Let (L, ) be a complex line bundle over M. We say a map

s: M — L is asection if m o s = idyy.

Nowhere vanishing Section(Definition)- Let U C M be open. We say £ €
(U, L|y) is a framing section over U C M if there exists trivializing neighbourhood

U, such that Fy, ({(x)) # (,0) for all z € X.
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Well-definedness of nowhere vanishing section-
Let U and V be trivializing neighbourhoods containing x and suppose that £ is
framing in coordinates of U then,
Fo(€(x) = Fy o Fy' o Fy(€(x)
Fy(&(x)) = Fy o F;' o Fyy((, 2)) for some z # 0 in C
Fy(&(x)) = (2, gvu(2)z)
Since gyy(z) € C* € is well-defined.

Proposition- Let (L, 7) be a line bundle over M. Then, L = M x C iff 3 a
nowhere vanishing section & : M — L over M.[4]
Proof- i) Let ¢ : L — M x C be a complex line bundle isomorphism. Define
£: M — Lby &(z) = ¢ (z,1). Since ¢ : L — M x C is a diffeomorphism ¢ is a
nowhere vanishing section.
ii) Let & € I'(M, L) be a nowhere vanishing section and v € L, for some z €
M 3U, C M trivializing Fy,(£(z)) = (z, fu({(z))) since &(x) # 0, we can write

Fy,(v) = (z, A(v). fu(&(x))) where A(v) = f(;fzjg—((?;))) eC

If V, € M is another trivializing nbhd then fy (v') = gyy(x) fu (V') for all v’ € L,
fv(v) fu(v) . . NPT

N(v) = = = A(v), hence A is independent of choice of trivializing

=T~ folewy

coordinates.

Define F': L - M x C by v — (7(v), A(v))
Flp, (ve +we) = (2, Mve + wy)) = (2, Mve) + Mwy)) = Flp, (ve) + Flp, (wy)

The map G : M x C — L given by (z,z) — v, where v, = 2.{y, (x) is inverse of

F, hence L = M x C.
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Action of C*-
Define C* x L — L by A.v = F;;*(7(v), \. fy(v)) ,where U is a trivializing neighbour-
hood at 7(v).

Let V' be another trivializing neighbourhood at 7(v) = z, then
Fyo Fy (@, M fv(v) = (2, guv (2). A fr(v))
Fyo Fy'(z, M fy(v) = (2, guv (@) Agvo(z) fu(v)) = (2, A fu(v))
This implies that Fy, ' (z, \.fy (v)) = F;; ' (2, A fu (v))

Corollary(Framing property)-
Let U C M be a trivializing neighbourhood. Then, for each s € T'(U, L) there exists
sy : U — C such that s(x) = sy(z).&y(z), for each x € U, where £y is a nowhere
vanishing section of U[4].
Proof-
Let &y € I'(U, L) be a framing section then by similar process as above,
Fy(s(x)) = (x, M(s(x).1)
s(z) = F; ' (z, M(s(2)).1)
Define sy : U — C by sy(z) = A(s(z)) By definition s(z) = sy(x).£(x)

Framing sections under change of coordinates-
Let U and V be trivializing neighbourhoods with frames {; and &y. Let z € UNV,
then Fy o F;'(z,1) = (x, gyy(z)) which implies that F;;'(z,1) = F,'(z, gyvu(x))
and &y () = gvu(z)év(x)

Proposition(Description via sections)-
Let (L,7) be a complex line bundle over M. Then s : M — L is a global section
iff there exists open cover of trivializing neighbourhoods {U,|a € I} and a family

of functions {s, : U, = Cla € I} such that s,(x) = gas(x)ss(z) , for every x €

23



U, N Uz

Proof-

i) Let s € I'(M, L) be a global section and {U,|a € I} be a trivializing cover of M.
Then by above corollary for each U,, 3s, : Uy, — C s.t. s(x) = s4(2)&(x) for all

x € U,.

Let U, NUs # ¢, then &, = gpaép on U, N Us.
Since, s is globally defined s,&, = sp€s = sp(gapa)- It follows that s, = gasss

ii) Define s|y, = sa&, then 7o s|y, = idy,
On Ua N U/g,

Slua = Safa = (9ap5s)(98a€s) = s58s = slu,
Hence, s is globally defined.
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Chapter 4

Hormander’s Theorem

4.1 Introduction

- The del-bar problem has been central to field of complex analysis since it captures
holomorphic information about the complex plane separating it from the study of
real structure on it. Hormander’s approach that we would study is based on method-
ologies of complex Hilbert spaces- functional analytic approach, where the underlying
notion would be captured by recognizing the function spaces as spaces of sections of

a trivial line bundle equipped with a Hermitian metric.

4.2 Hormander’s Theorem on the complex plane

Consider a complex-valued function f € C*(C), then df : C — TE(O’I) defined as

0 x
a—]_cdz is a (0,1) form on C. Let a € F(C,TC(O’I)) be an arbitrary (0,1) form then
Z
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a(z) = g(2)dz for all z € C. We want to know when such a form can be written as
of

a = Of, for some f € C*(C). This is equivalent to solving the problem 5 = g,
Z

for some function f € C*(C).

The Hilbert space of solutions
The space of all smooth functions C*°(C) under pointwise addition and scalar mul-
tiplication forms a C-vector space [4]. To make it a inner product space we define

the inner product (,) : C(C) x C*®(C) — C with the weight e~*I" by the expression

(f,9) = %/f(z)ﬁe"zﬁdz ANdz
C

Prptn- (,) : C°(C) x C*°(C) — C defined as above is an inner product.
Proof-

i) Bilinearity-
i >
(fr + fo,9) = 5 /(f1 + fg)ﬁe“zl dz Ndz
. (C .
= % /f1§€_|22dz A dz + % / foge PP dz A dz
C C

= (f1.9) + (f2,9)

(F29) = 5 [ FAge ™ dz ndz =X(f.0)
C

ii) Non-negativity-
Let f € C®(C) , then g(z) = | f(2)|2e”*" is a non-negative function on C.

Taking integral on both sides, we get %/g(z)dz Ndz = /g(x, y)dzdy > 0
C R2

e (f,f) =20
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Furthermore, (f, f) = 0 implies |f(z)| = 0 for all z € C and hence f = 0.

iii) Conjugate Symmetry-
9.5) =3[9 [ (@) dz ndz = 5 [ g(2)f ()" dz N dz = (. g)

Define V = {f € C°(C)| such that (f, f) < co}.
Let f,g € V By Cauchy-Schwarz inequality |(f, ¢)|* < |(f, f)I*.|{(g, 9)|* < oo. Hence
(,) is well-defined on V.

(frg.f+a) =1+ {f9)+{gf)+{9,9) <o
INLAEY = |AP(f, f) < oo forall A e C

This implies that (V, (,)) is an inner product space. The inner product space V
can be equipped with topology induced by the Ls-norm given by ||.||2 = (,). Denote
L2(e7 1) = V”'HLQ, then the completion H is the Hilbert space wrt the L2 norm ||.||.

Such a choice of weight allows us to accomodate functions whose growth rate is

lesser than the exponentials.
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Densely defined Linear Operator(Definition)-
Let V,W be two topological vector spaces. We say T is a densely defined linear
operator if Ja dense subspace D(T') C V s.t. T': D(T') — W is a linear operator.|[3]

Adjoint Operator(Definition)-
Let V, W be two topological vector spaces and T': D(T) — W be a densely defined
linear operator where D(T) C V is a dense subspace. A densely defined operator
T* : D(T*) — V is said to be adjoint of T" if 3 a dense subspace D(T*) C V such
that
(T, ) = (Y, T*¢) for all ¢ € D(T*) and ¢ € D(T)[3]

The del bar operator-

We can define 9 : C*°(C) — C>®(C) by f — g—f Note that d is a C-linear
Z
operator on the space C*(C).

_ 0 0 _ _
5’(f+g)—Ff+a—g Of + 0g for all f,g € CC

d(cf) = %(cf) = c.0f for all c € C and f € C=(C)

The space of compactly supported smooth functions C'2°(C) is dense in the Hilbert
space LQ(e_‘er). Hence, we see that the linear operator 0 is densely defined on

L?(e71*1*). We construct its adjoint operator as follows[4]:

Let f, g e C( C)
3f
—IZI = —IZI
/ dz Ndz / dz Ndz
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From integration by parts,

,l. — a 2 Z s 2 a 2 2
- _ - —|z| > — _ |2| —[21%y o2l =
5 /faz(ge )dz A dz 5 /fe aZ(ge Ye F dz A dz
c C

The adjoint operator of del bar(Definition)-
— . B
Define 9 : C°(C) — C*(C) by 0 g = —€|Z|2£<g€_‘2|2)

We will get (g, df) = (9 g, f) for all f,g € C=(C)

We define 9 : L2(e7 ") — L2(e7 ") by f — 0f, where Of satisfies
(0f,9) = (£,0 g) for all g € C*(C)

Statement- There exists f € L*(e~ ") such that 0f ¢ L?(e1*) [4].

Consider the radial function f(z) = xc—p(o,1)(2) ,then the L? norm of f is given

by (f, f) = % / e #dz A dz. In polar coordinates, we get
C—B(0,1)

oo 2w

(f. f) = e rdrdd=n | eldt <o = fEH
r=/19_/0 t:/l
Let ¢ € C2°(C),then
Of, ¢) = (£,0 ¢) = -4 / F2L(Ge )z A dz

Now for any smooth function g,
0y _0g0r 2906
0z 0roz 000z

or or e
T A T az z az 2 an
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, 00  —z 20 ie
120 - 120
e 0z Vi 0z 2r

IR

0y _ 09" dgic”
0z Or 2 00 2r

Choose ¢(z) = el"¢?h(|z]), for some compactly supported smooth radial func-
tion h on C

Integrating via polar coordinates

oo 27 00

// ( )rdrd@- //igrhdrdﬁ—— /8
287“

r=06=0 r=00=0

We get that (Of, ¢) = wh(1)

We define a sequence of compactly supported smooth functions {¢.} taking value
7 at |z|] = 1 as follows: Let x : [0, 00)

[0,1] be a compactly supported smooth
1 (z—1)?
function then define h (z) = —exp (%) x(x)

Now as € — 0, ¢, — 0 uniformly
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2 27

) 2 1 —2(|z]—1 2(r—1)2 e r?
lbe] 2 :%/eQZl |Z|26(| B ) e Pz A dz = / /e ey
C

r:% 0:0

2 2

2(7‘ n2e r2 72(“1)2
=27 e~ —dr < A. < dr

r=

N|=

1
r=3

This implies that ||¢.|]| — 0 as € — 0

By Cauchy-Schwarz inequality, [(Df, #)|? < ||0f]|[?||#||?
()P < 110f1Pll¢el?

Since 72|h(1)]*> = 1 for all € > 0, this is a contradiction.

We define D(9) = {f € L*(e71#")|0f € L*(e*F)} as the domain of 0.
Let f € C°(C), then f is zero except a compact set and K = supp(g) is compact

in C. Hence, we get

af af / 2 |22
a_aa_ | | dz N dz < 0o

It follows that C°(C) € D(d) = D() is dense in L*(e~ ).
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Hahn-Banach theorem for anti-linear functionals-

Suppose T': W — C is an anti-linear functional, where W C V is a subspace
Then we can write T'(v) = T1(v) + iTy(v)
T(iv) = —iT(v) = Ti(w) + T (iv) = —iT1(v) + Ty (v)
Ti(v) = =Ty (iv) and Ty(v) = Ty (iv)
Hence T'(v) = T1(v) + i1y (iv)

Ti(v) = w Forr € R
Ti(v+rw) = Lot ro) _g Ttrw) T0) +2TT(“’) + T(v) +27“T(w)
- w * T-w = T1(v) + r.T(w)

This implies 77 (v) is R-linear.

By Hahn-Banach Theorem for R-linear functionals, 3 77 : V — R such that
Tilw = Ti. Define T : V — C by T(v) = Ty(v) + iT1(iv), then T is R-linear such
that T|y =T
T(iv) = Ty (iv) 4+ Ty (—v) = Ty (iv) — i1y (v) = —i(iT(iv) + T'(v)) = —iT(v) Since the

extension is C-linear, Hahn-Banach theorem works for anti-linear functionals.

L2-Estimates of the 9" operator-
Let f € C°(C),then[4]
v — ) 0 2 0 20\ = (.2
— L i N 1 —lz| =z >
191 = @@ 1.0 = [ o2 (= L)) T na
C

= —% / % <elzl2 (g—ﬁe—lz'Q + fe—z|2(_z))> Fe P dx A dz
C
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i (of n
__5/%<£—fz)fe|dz/\dz
C

- —=Z— f) 76’|Z|2d2 Adz

——z>fe_||dz/\d_+ /|f|2 “Fdz A dz

_ L [O(Of _pp AL
= 2/82 <82 )fdz/\dz—i— /|f| dz \Ndz
C

By using integrtion by parts on C,

of "Zzgfdz/\d‘ /|f|2 “Pdz A dz

0z
<c
of 1(of .of . .
Now 9% 3 ((9$ + Z@y)’ on taking conjugate we get

of 1(of Of\ of
)

ox dy 0z
C/

(01,0 f) = (0f,0f) + (f. f)

of|”

0z

e Pdz Adz + = /|f|2 P dz A dz
C
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Hormander’s Theorem in C-

Let L2(e*|z‘2) be the Hilbert space of complex valued functions defined as above
and 9 : D(9) — L?*(e”*") be the del bar operator densely defined. Then, [4]
i)for all g € L?(e”1*”) there exists f € D() such that df = g.
ii) Furthermore f, g satisfies the estimates

/ |FlPe P dz A dz < / lg]2e ¥ dz A dz
c c

Proof- Consider the adjoint operator of del bar & : C°(C) — C°(C) then the
space 9 (C°(C)) is a linear subspace of L2(e~ 7).
Let g € L2 (e ¥} | we define A : 8 (C>°(C)) — C by

*

N8 ¢) = (g,0)

MED @) =END ¢) for all € € C.
By Cauchy-schwarz inequality, |{g, ¢)| < [|gl|-l|¢]| < llg]l.||0"¢||
ie. [N )2 < |lg]|.|]0 || This implies A : § (C>°) — C is a bounded and anti-

linear.

By Hahn-Banach theorem for anti-linear functionals 3 X : L2(6_|z‘2) — C such

that Alg+ coe(c)) = A and [[A|[cge) = |[Al] L2 (mii2y
By Riesz- Representation theorem, there exists f € L2(e*|z‘2) such that

for A= L2(e” ") — €, M(h) = (f, h) for all b € L*(e”1*F) and ||A[[ 2,12, = |I£]]
For all ¢ € C(C) put h = 8 ¢ and we get (f,8 ¢) = M0 ¢) = A0 ¢) = (g, ¢)

af

This implies g = 7
Z
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Furthermore, [|A|| = [|£]| < ||g]| i.e. /|f|26_|z2dz NdzZ < /|g|26_z|2dz/\ dz.
C C

Hence, the theorem allows us to solve the del bar equation and says that the
derivatives will have the tendency to escape the solution space as evident from the

example given in the Statement 1.
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4.3 Hormander’s Theorem on a Riemann surface

Consider a Riemann surface X and H — X be a holomorphic line bundle with a
Hermitian metric h = e~® and we want to generalize the del-bar problem for X, for
this purpose the 9 operator will be defined as a connection on space of smooth (0,1)-

forms taking them to H-valued (0,1) forms.

Del-Bar Operator(Definition)-
Let s € I'(X, H) be a smooth section, then 3 collection of trivializing neighourhoods
{U,} with frames {{,} and transition functions {g.s} such that s|y, = fo&s Where
fa : Uy — C is smooth.

Define 0s|y, = 0f. ® &,
On U, NUsg, & = gpaép, and

we get 0|y, = Ofa @ & = 0fa @ 9sals = gsalfa @ s

Since H is holomorphic ,gg, is holomorphic 9s|y, = 0(gsafa) ® &5
NOW, fﬁgﬁ = faga = fagﬁafﬁ 1mp1y1ng fﬁ = fagﬁa
— 55|Ua = 5]6/3 X 55 = 58|Uﬂ

This implies 0 : I'(X, H) — T'(X, T;{(O’l) ® H) is well defined[4].
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Holomorphic Line bundle(Definition)- Let H and X be complex manifolds
and 7 : H — X be a map. We say the pair (7, H) is a holomophic line bundle iff:
i)(m, H) is a complex line bundle
ii)For each trivializing nbhd U, the trivializing map Fyy : 71 (U) — U x C is a

holomorphic map.

Note that since Fy are diffeomorphism, by inverse function theorem they are
biholomorpism as well. This implies that the transition data gyy : U NV — C* are

holomorphic.

Hermitian Metric(Definition)-
We say a smooth section h : X — H*® H* defined as  — h, is a Hermitian metric
for the line bundle H if for all x € X, h|, : H, ® H, — C satisfies:
)h|.(v,v) > 0 and h|,(v,v) =0iff v =0 for all v € H,
i)h|.(v 4+ Mw,u) = hl(v,u) + M| (w, u) for all v, w,uw € H, and A € C

iii)h|, (v, w) = h|.(w,v) for all v,w € H,

Integration of a (1,1)-form(Definition)-
Let X be a Riemann surface with a triangulation 7 = {T;|i € I} such that for
each triangle T; € T, T; C U;, where (U, z;) is a trivializing neighbourhood and
ael'(X, Ag’l)) be a smooth (1,1) form on X. Then, a|y, = fidz; A dzZ; We define

Za—zg/fi(zi)dzi/\dz

el
" am)
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Here, for defining integration of (1,1)- forms the Riemann surface is assumed to
be triangulated, however it is possible to give any Riemann surface a triangulation

by solving Dirichlet problem on it[1].

Inner product structure on I'(X, H)
Note that under pointwise addition and scalar multiplication both the spaces are
C-vector spaces[4]. We want to define an inner product structure for doing Hilbert

space theory with del-bar operator.

Let w € I'(X, A}(l’l)) be a positive (1,1) form on X and s,t € I'(X, H) be smooth
section. For each x € X ,3U, C X trivializing nbhd for H at x € X an U], trivializing
for T)*((l’l) at . Therefore, U = U, N U,, trivializes both H and T;(l’l) at v € X.
Therefore, we can say that there exists a collection of trivializing neighborhoods

{U,} such that s = f,&, and t = g,&, and w = e " dz, A dZ, on U,.

Consider a Hermitian metric h : X — H* ® H* for the line bundle H.

For each z € X,

hla(s(2), t(2)) = hlo(fo(2)€a(2), 9a(2)Ea(2)) = fa(2)ga(2)h(Ea(2), Ealz))

Prptn- h(s,t) : X — C is well-defined.
Proof- Let U, and Uy be trivializing neighbourhoods such that U, N Uz # ¢.
On U, NUg,
h(s, t) = faGah(8a: &) = FaGah(9ha8s: Thads)
h(s,t) = (9apfa) (Gha9a) (s, €5) = f55N (&5, Ep)
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Thus, h(s,t) is well-defined on X.

Define s A, t = h(s,t)w, where on each Uy, s Ayt = fogae ?>e "dz, A dZ, Since
both h(s,t) and w are globally defined s A, t is a global (1,1) form.

We define (s,t) = /s Nyt for s, t € I'(X, H).
b
Proposition- The map (,) : I'(X, H) x I'(X, H) — C is an inner product and
the space (I'(X, H), (,)) is an inner product space.
Proof- 1) (s, s) = [ h(s, s)w, Since h(s,5) > 0 and w > 0 on X, (s,s) > 0.
X
(.0 = / h(s o — / h(t,5)w = (¢, s)

X X
Hence, () is an inner product on I'(X, H).

Consider the space V' = {s € I'(X, H)|(s, s) < oo}, then V C I'(X, H) is a vector
subspace.

Proof- Let f,g € V then [{f, g)I* < ||f]lI*lg]]* < oo

(f+9.f+9) = (f.]) +2Re({f,9)) + (g, 9) < o0
ML) =M, f) <ooforall A e C
Hence, V' is a vector subspace of I'(X, H).

Then, L?(¢,w) = VH'H is a Hilbert space with the norm induced by inner product.
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Inner Product Structure on I'(X, TV @ H)-
Let o, p € I'( X, T)*((O’l) ® H) be smooth sections of the H-valued (0,1) forms. For some
collection of trivializing nbhds {U, }, we can write o = f,£,®dZ, and 8 = g€, ®dZ,
on each U,. for some f,, g, € C*(U,)

AB)e ®  —1 ‘
Define % = ?fagae_%dza NdzZ, = %fagae_%dza ANdzZ, on U,
i 7

A Be*‘ﬁ

Proposition- a— defined as above is a global (1,1) form[4].

X( 0 gga and gﬂa xO _ ggz. We perform a change of

Proof- Let us denote gz
coordinates from U, to Ug on their intersection U, N Ug, we get that

§a = gé@&a, dzq = gﬁz dzg and dz, = 950 d—ﬁ

(anBle?

7 _ “H z z Iz
2% = §fagah(gg1€ﬁ7 gé{afﬁ)(ggadzﬁ) A (gg;dzﬂ)

= (g 9% fa) (95.9% ga) P(Es, Ea)dzs N dZg
= L fogpedzs N dz
= §fggﬁe 28 Z3

(aABle?

1

Hence, is well-defined.

1

We define (o, #) = 5
i

/(a A B)e™® for a, 3 € T(X, H ® T)*((O’l))
X

Proposition- The map (,) : I'(X, H ® T)*((O’l)) x I'(X,H® T)*((O’l)) — C is an
inner product.

Proof- i) Positivity- For a € I'(X, H ® T’y +(0 1))
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(a,a) = TET B / |fI?e™%dz Adz >0, where al,m = fE®dz

2(T)
ii)Conjugate Symmetry—
(a, B) = / fge®dz Ndz = / fge %dz N dz = (B, a)
TeT Z(T) TeT 2(T)
iii) Bilinearity (ay + ag, 8 Z / fi+ fo)ge ®dz N dz
TeT
(o + aw, B) Z / fige™ ¢dz/\dz+ Z / foge~%dz A dz
TET TET

= (a1, ) + (a2, B)

Define the space W = {a € I'(X, H ® T;}(O’l))|<oz,oz) < 00}. By similar calcula-
tions as before we can see that (W, (,)) is an inner product space. We can equip W
with the metric topology induced by the inner product, we denote the completion

SRS
by W =12,(9) .
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Adjoint operator of 0-
Define 9 : o (X, H®T)*((O’1)) — To(X,H) by 5 — 8 8 where 0 3 satisfies @*6, s) =
(B,0s) for all s € To(X, H) [4]
Note that [ is compactly supported, denote K = supp(f), then K can be finitely
triangulated which implies (3, ds) = / B N ds < 00

(B,0s) = /6/\83

—Z /f—e ¢dz/\dz-Z /f—e Sdz A\ dZ
=T

where ., = f& ® dZ; and s\ (T) = h£

Use integration by parts on each domain 2(T;),

- Z 2 / (fe=®)hdz A dZ = Z / fePYhe” Wt dz N dz

- 2(T;)
—x a . . _ of 0¢
— _Yte — P\e i
We define 0 8 e 8z(fe )& (82 82) & on z(T;). Then,
Z / —e? fe e WH9dz A dz = (B, Ds)

- 2(T3)

Statement: We claim that & 3 defined as above is globally defined.

Proof- Let U and V be a trivializing neighbourhood for H and T O such that

UNV # ¢ with 9 By = —e¥ <8f 8¢>§and86|\/——e (8_]”_ ’6—¢/)§’.

0z 0z 0z
On U NV, we have relations, e ¥ = (gf,¢% ) e, e = (g, g1 )e
0 79 0
9. ng 9 and § = ngfl and f = gVUgVUf/
) af 7(1,0) . 8 T(l 0) _ ag af/
We derive that == = g3 6V (9vuf)) = 0y 9V ( R
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On differentiating % = (9%,9%,) 'e " we get
000 _ ¢ 0 oy — I8 (090 99
) =9uv 9uv e’ — gi)

92 = 9uv 9z /<(9UV9UV) B v e B
00 _ 100 (0 08 gl
i G ng <95’V§ — 8Z’V This gives us,

Vo7 T o

a¢ _( H )—1 T;((I’D) ( H aqb, agll}lv) o T;((LO) (8¢/ 1 895[‘/)

9. 9uv) YGuv - = 9uv 04 ggv B
Putting it in 0_f — f% , we get
0z 0z

(1,0) 8g 8 f ! , o9’ 1 8gH
= ggv g{-/F ( VUf VU(? ; (ggUf) (w — _gH 8Z/V
Uv

T(l 0) . 89 af/ 8¢/ 1 agH
gVU g{fU( VUf + VUa / ggUflg + (95[‘/)2 aglvf/

(1 0) af /8¢’ , ag dg
= gUV gf‘/rUg\IjU ((? - ?) +f ( Juv aV,U +QVU ag/v))

740 of ,0¢
=9y g{ng{/{U ((82 B ) + f'— B (gUVgVU))

Since g gt = 1, we get that

of a¢) e (81”_ ,8_¢’)

Juv gVUgVU

0z 0z 0z 0z
—x ’ (1’0 ’ 100’ /
So that 8"l = (g9 )e” oy oot (35— 1'55) (athv€)
,(Of . 0¢
— ¥ A A /
‘ (82’ 0z > ;

Hence, 0 f is globally well-defined.
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Del-bar Operator on L*(¢,w)-

Define 0 : L?(¢,w) — L?OJ)(Qb) by s — 0Os,
where 9s satisfies (9s, 8) = (s, ) for all § € [y(X, H ® T;(O’l)) [4]

Define Dom(0) = {s € L*(¢,w)|0s € L%, 1)(¢)}. Since T'y(X, H) C Dom(0), we
see that Dom(0) is a dense subspace of L?(¢,w).

N —k
L?- estimates on 0O -

We have found that 8" : Ty(X, T)*((O’l) ® H) — I'y(X, H) is given by
—x 0
0p= —e’”“*”“a—(e’%ha)fa on each U, where 8 = h,&, ® dz, and U, is a trivial-
Za

izing cover

Theorem(Bochner-Kodaira-Identity )-[4]
Let g € I'y(X,H ® T;((O’l)) be a compactly supported smoooth H-valued (0,1)-
form.Let {U,} be a open trivializing cover of H ® T;(O’l) and Ag’l). Then,

= 1 = ' —
1081 = 5; [ 1982w+ 5 [ 18ie#00(6+ )
X X

where if U is a trivializing neighbourhood of H ® T)*((O’l) and A%’l)
Bl = fdz @&, wly = e Vdz Ndz
VBI2e? = 72| fz + b= f? and |5[2e o, = e |

are globally defined.
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Proof-Let 8 € To(X, H @ T3"Y), then
(@'8,3°8) = (3(5'8), B 2Z/a 8) A Be—t

Let U be a trivializing neighbourhood and g = fdz ® £ on U.

0@ 3.0l = [ = (e (5~ 152) ) Ttz na
U

= % /(_ewwz<€¢f)27 - elpi(ﬁ(fzf - (bsz)? + €¢7¢¢22’f’2)dz Adz

/ (—ees(e™?f).f — e¥(fze7 ). f + e 2| fIP)dz A dz

U

N | .

Use integration by parts on U for 1st and 2nd term,
= [T+ (Tt + 00l Pz N2
U

- % /(ewwzwzf + ewszT + 6w¢?(7)2>6_¢fd2 A df

U

+% /(e%zf +eV(F).) fee0dz N dZ + % / "¢z f*)dz A dZ

U U

- % /ew_(b(qu)zwz? + ¢E(7)zf + ¢37f2 + (?)zf?)dz Ndz

U
+1 [ e (¢oz + Vuz)| fPdz N dz
U

= % /€2w_¢|¢z? + f5|26_wd2 Ndz + % / ew_(b(gsz + 1/)25>|f|2dz Adz

U U
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3 af (10) (‘) (10) 89 af
i) —= 9% gVU 8—/(gUVgUVf) _gVU gHV( ag/vf + UVa—/)

Differentiating e = (g4, 9%,)e™*" on both sides

0V 0 0 » . (0g%, OY
—€ w@_ Juv 92 ,((QUngve w) _ggv(w) o ( aglv Ve 0 gUV)

z z ’a¢ Tx(1,0) dz ag / /877/1
(ggvgﬁrv)ew Er QU)\{/( )gdUV aglv e’ +e 2 ,QUV

oY _ Tx(1,0) ( —1 69?71/ 8¢/>

0. v \yE o7 o7

9, (1,0) o9%, , = Of _ [ —10g%, Oy
f+f¢— " gHv<( gg,vang‘frva—;)Jrgi‘?vf(ﬁ Jov | ¢>)

gov 07 07
T(l 0 f/ /3¢/)
=9t 9ovIty (8 =+ f B

_ - Y dz I_¢/) Tx(1,0 = -
So that ey, f + fof? = (987,987 2 oyl = |gvit " gl g PlULf + L]

Tx(1,0) _

Since g7, dz )1

= (9{7,)" " we would get
e f + fol? = X LT+ fL]

Hence, this expression is globally defined.

iii) e | f|* = (g% 9% e ) Nolygtte ) (|9dhy 93 12 f) = eV~ | f/|?

2 *(0 1) 2

iv) 82@2( Jdz Ndz = ’gVU ‘ 9% |2azla§(')d’z//\d?
Now, e~ ¥+ = |ggv|2|g%zv‘e—(w’+¢/) Since, ggv and gdUZV are holomorphic their

modulus is a harmonic function on U NV putting it above we get,

o2
azﬁz(

22

W+e) )dz N dz = |9Uv| |9 0705

(emWH9Nd A d7
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2

0 / 82
e~ Wte)_—~ — 2 e~ W) _Z

Hence, 09(¢ + 1) is globally defined (1,1) form.

Hormander’s Theorem-[4]
Let H — X be a holomorphic line bundle over a Riemann surface X. Let H be
equipped with a hermitian metric h and w € I'( X, Ag’l)) be a positive (1,1) form on
X .If 90(¢ + ) > cw, for some ¢ > 0, then
) for every o € LY, 1)(¢) 3u € L*(p,w) s.t. du =«

1
/|u|2 w<— ?/a/\@e_‘z’
{

X

Proof-Let a € L(o 1y(¢) be a H-valued (0,1) form.

Consider the adjoint operator a9 - Fo(X,H® T)*((O’l)) — [o(X, H), then since 9
is a linear operator 0 (I'o(X, H ® T;(O’l))) is a linear subspace of L*(¢,w).
We define A : 9" (Do(X, H ® T{Y)) = C by AD"8) = (a, B).

Note that for 3,y € To(X, H ® T)*((O’l)) and c € C
MO (B+ 7)) = (o, B+ e) = (o, B) + e, ) = M0 B) + A7)

By Cauchy-Schwarz theorem, |(a, 8)|* < (o, a) (8, )

By previous identity,

1381 > / BRe0B(6 + ) > / BRew | =l

—% 1 b~
This implies that [A(0 8)[*> < ~||a||?||0 B|/*.e. A is a continuous anti-linear
c

functional.
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By Hahn-Banach theorem for continuous anti-linear functional, 3 X L*(¢,w) —

C such that i) = X and ii) ||A]] = [|A]]

MFO(X,H@T;(O’”)

Since L?(¢,w) is a Hilbert space, By Riesz-Representation theorem 3 u € L*(¢, w)
such that X(s) = (u, s) for all s € L2(¢,w) and [|A|| = |[u]|.

In particular for all 8 € To(X, H ® T{"), X0 8) = (u,d"5)

*

By definition (o, 8) = A(@ 8) = A(@'B) = (u,d B)
This implies that Ju = « in the sense of currents as defined.

Furthermore, we have that [|u|| = ||| = |[A]| < %Ha“

4.4 Conclusion

The following report gives an idea about how rich the theory of Riemann surfaces
can be.They serve as a fundamental building block for learning about the classical
theory of manifolds (smooth or topological) which further evolves into methods of
modern geometry through line bundles or more stringently holomorphic line bundles.
Modern techniques of pde from functional analysis to operator theroy can be studied
on the space of sections of operators defined on manifolds out of purely geometric
motivations. The solution of 9 and 00 is essential in studying the phenomenon of
analytic continuation which are well-known for Riemann surfaces[4]. Further appli-
cations of Hormander’s theorem lies in the embedding problem of Riemann surfaces

which allows us to treat them as domains in some C" ;n > 1 [4].
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