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ABSTRACT

Name of the student: Navprabhat Semalti Roll No: 20MS036

Degree for which submitted: M.Sc. Department: Department of Mathematics

and Statistics

Thesis title: Riemann surfaces and Complex Analytic Geometry

Thesis supervisor: Dr. Sushil Gorai

Date of thesis submission: May 2025

The goal of this thesis is to study some key aspects of the theory of 1-complex

manifolds called ”Riemann surfaces” that are also 2-smooth manifolds. Riemann sur-

faces are nicer to study in the sense that behaviour of holomorphic functions on the

complex plane can be translated onto them upto some degree, this makes their theory

slightly less different and less challenging than higher dimensional complex manifolds.

In general, people try to study Riemann surfaces as compact Riemann surfaces and

non-compact Riemann surfaces(Open Riemann surfaces) since the phenomenon ob-

tained as such vary depending upon this choice. We have studied the behaviour

of holomorphic mappings of Riemann surfaces, which when restricted to compact

connected settings give a quantification by Riemann-Hurwitz formula[4]. Along the

way, for broader techniques on Riemann surfaces we have worked with holomorphic

line bundles that allows us to use L2 theory on the space of their sections[4]. These

techniques further allows one to probe into the phenomenon of analytic continuation

which is also studied through del-bar problem on domains in Cn[4].
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Chapter 1

Riemann Surfaces

1.1 Introduction

The theory of functions of several complex variables is quite varied and interesting

and various nice properties and phenomenon can be directly generalized from the

theroy of one complex variable, however for studying at more general levels and

better disguised phenomenon theory of complex variables has been generalized to

somewhat special domains called ”complex manifolds”. Here we deal with a complex

manifold of complex dimension n=1 called a Riemann surface where theory of one

complex variables has much nicer generalizations.

Holomorphic Function(Definition)- Let Ω ⊂ Cn be an open set. We say a complex

valued function f : Ω → C is holomorphic in several variables if
∂f

∂zi
= 0 on Ω for

i = 1, 2, ..n.

Holomorphic Mapping(Definition)- Let Ω ⊂ Cn be a open set. We say F : Ω →
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Cn is holomorphic mapping if each component functions Fi : Ω → C are holomorphic

i.e.
∂Fi
∂zj

= 0 for i, j ∈ {1, 2, ..n}.

Biholomorphic Mapping(Definition)- Let Ω1,Ω2 ⊂ Cn be two open sets. We say

a holomorphic mapping F : Ω1 → Ω2 is a biholomorphism if F is bijective and

F−1 : Ω2 → Ω1 is also holomorphic in several complex variables.

Let X be a Hausdorff topological space.

Complex Chart(Definition)- Let U ⊂ X be a open set and ϕ : U → Cn be a

homeomorphism. We say the pair (U, ϕ) is a complex chart.

Compatibility of coordinate charts(Definition)- Let (U, ϕ) and (V, ψ) be two com-

plex charts such that U ∩ V ̸= ϕ. We say that the complex charts are compatible if

ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V ) is a biholomorphic mapping.

Complex Atlas(Definition)-

We say a collection of complex charts AX = {(ϕα, Uα)|α ∈ I} is a complex atlas if:

i)
⋃
α∈I Uα = X

ii)(ϕα, Uα) and (ϕβ, Uβ) are compatible for any α, β ∈ I

Complex Manifold(Definition)- Let X be a topological Hausdorff space, if X

admits a complex atlas AX we say X is a complex manifold of complex dimension

n.

Riemann surface(Definition)- A complex manifold of complex dimension 1 is

called a Riemann surface.
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1.2 Construction of some Compact Riemann sur-

faces

1. The Riemann Sphere(P1)-

Consider the set X = {(u, v, w) ∈ R3|u2 + v2 + w2 = 1} ⊂ R3[4]. We know that X

is a topological Hausdorff space in the subspace topology in R3. Furthermore, it is

compact as well.

Denote the north pole of the sphere as eN = {(0, 0, 1)} and south pole as eS =

{(0, 0,−1)}. Take the stereographic projection about eN which sends a point on a

sphere say (u, v, w) ∈ X to a point on the plane say (x, y, 0)

By the equation of straight line passing through eN and joining (u, v, w) and

(x, y, 0) we get that
x− 0

u− 0
=
y − 0

v − 0
=

0− 1

w − 1

and (u, v, w) ∈ X goes to ( u
1−w ,

v
1−w ) ∈ R2

Similarly taking stereographic projection by eS,

x− 0

u− 0
=
y − 0

v − 0
=

0− (−1)

w − (−1)

we get that (u, v, w) ∈ X goes to ( u
w+1

, v
w+1

) ∈ R2

Let UN = X − {(0, 0, 1)} and US = X − {(0, 0,−1)} be two open sets in X. We

define ϕN : UN → C and ϕS : US → C as follows:

ϕN(u, v, w) =
u+ iv

1− w

3



ϕS(u, v, w) =
u− iv

1 + w

Since w ̸= 1 for (u, v, w) ∈ UN and w ̸= −1 for (u, v, w) ∈ US, ϕN and ϕS are

well-defined.

Let z = x+ iy = ϕN(u, v, w), we want to find (u, v, w) = (u(x, y), v(x, y), w(x, y))

We have that u = x(1− w) and v = y(1− w), furthermore since (u, v, w) ∈ X

u2 + v2 + w2 = 1

w2 = 1− (x2 + y2)(1− w)2

w2 = (1− x2 − y2)(1− w)2

(x2 + y2 + 1)w2 − 2(x2 + y2)w + (x2 + y2 − 1) = 0

We get that,

w =
2(x2 + y2)±

√
4(x2 + y2)2 − 4(x2 + y2 + 1)(x2 + y2 − 1)

2(x2 + y2 + 1)

w =
x2 + y2 ± 1

x2 + y2 + 1

On UN we will have w =
x2 + y2 − 1

x2 + y2 + 1
, u =

2x

x2 + y2 + 1
and v =

2y

x2 + y2 + 1

We define ϕ−1
N (x+ iy) = ( 2x

x2+y2+1
, 2y
x2+y2+1

, x
2+y2−1
x2+y2+1

) and since ϕ−1
N is well-defined,

ϕN is bijective. By componentwise continuity, we can see that both ϕN and ϕ−1
N are

continuous. Hence ϕN : UN → C is a homeomorpism.

Consider the transition map from coordinate chart (UN , ϕN) to coordinate chart
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(US, ϕS), ϕS ◦ ϕ−1
N : ϕN(UN ∩ US) → ϕS(UN ∩ US) is given by

z = x+ iy →
(

2x

x2 + y2 + 1
,

2y

x2 + y2 + 1
,
x2 + y2 − 1

x2 + y2 + 1

)
→ x− iy

x2 + y2
=
z̄

z
=

1

z

Since ϕN(UN ∩ US) = ϕS(UN ∩ US) = C − {0} the above transition function is

holomorphic with holomorphic inverse.

Note that UN ∪ US = X, so the complex atlas {(ϕN , UN), (ϕS, US)} gives a bi-

holomorphic structure on X. Hence X is a Riemann surface.

2. The Complex torus

Let ω1 and ω2 ∈ C be two R-independent vectors, we look at the free module gen-

erated by them L = {aω1 + bω2|a, b ∈ Z}[4]. Note that L ⊂ C is a commutative

subgroup in C.

We define X to be the quotient group of L in C i.e.X = C/L. So there exists a natu-

ral projection map π : C → X given by z → z +L which is a group homomorphism.

Note that π is surjective.

We say U ⊂ X is open if π−1(U) is open in C. This gives quotient topology on

X via the quotient map π. Thus, π : C → X is a continuous map. Furthermore, we

claim that π is an open map.

Let Ũ ⊂ C be an open set. Then, π−1(π(Ũ)) =
⊔
ω∈L

(Ũ + ω)

Since Ũ + ω is open in C, for all ω ∈ L, we have that π(Ũ) is open.

Now, choose ϵ < 1
2
.min{|ω1|, |ω2|} then D(0, 2ϵ) ∩ L = {0}.

Let z ∈ C we claim that D(z, ϵ) ∩ D(z, ϵ) + ω = ϕ, for all ω ∈ L − {0}. If z′ ∈

D(z, ϵ) ∩ D(z, ϵ) + ω, then |z′| < ϵ and |z′ + ω| < ϵ implying |w| = |w + z′ − z′| ≤

5



|w + z′| − |z′| < 2ϵ. Hence, w ∈ D(0, 2ϵ) ∩ L so w = 0.

We define πz := π|D(z,ϵ) : D(z, ϵ) → π(D(z, ϵ)) Since π−1
z (π(D(z, ϵ))) = D(z, ϵ), it

is bijective hence a homeomorphism.

The collection A = {(π(D(z, ϵ)), π−1
z )|z ∈ C} is an atlas for X.

Theorem- Let X be a Riemann surface, then X is an orientable 2-manifold.

Proof- Let (U, ϕ) and (ψ, V ) be two coordinate charts. Then, ψ ◦ϕ−1 : ϕ(U) → ψ(V )

is a biholomorphism.[4]

Det(D(ψ ◦ ϕ−1)) = |(ψ ◦ ϕ−1)′|2 > 0 on U ∩ V .

Hence, X is an orietable 2-manifold.

6



Chapter 2

On holomorphic mappings of

Riemann Surfaces

Holomorphic Mapping (Definition)-

Let X and Y be Riemann surfaces. We say F : X → Y is holomorphic at p ∈ X iff ∃

coordinate charts (U, ϕ) at p ∈ X and (ψ, V ) at F (p) s.t. ψ ◦F ◦ϕ−1 : ϕ(U) → ψ(V )

is holomorphic on ϕ(U).

We say F : X → Y is holomorphic on X if F is holomorphic at every point of X.

2.1 Properties of holomorphic mappings

Open Mapping Theorem- Let X, Y be connected Riemann surfaces and F : X →

Y be a non-constant holomorphic mapping. Then, F maps open sets to open sets.[4]
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Proof-Let U ⊂ X be open we want to show that F (U) is open. Consider y ∈

F (U), then ∃x ∈ U such that F (x) = y. Let (ϕ, U ′) and (ψ, V ) be coordinate charts

at x ∈ U ′ and y ∈ V , then the map ψ ◦ F ◦ ϕ−1 : ϕ(U ′) → ψ(V ) is holomorphic on

ϕ(U).

Claim: F̃ = ψ ◦ F ◦ ϕ−1 is non-constant on ϕ(U)

Suppose it’s not true, then F is a constant map on U . This implies that U is both

open and closed. By connectedness of X, U = X. This implies that F is constant on

X, hence a contradiction. Let V be a connected neigbourhood of ϕ(U) containing

x, then by open mapping theorem on V , F̃ : V → F (V ) is an open mapping. Since,

F (V ) ∩ F (U) is an open neighbourhood of y in F (U). This implies that y is an

interior point, since y is arbitrary F (U) is open.

Theorem- Let X and Y be Riemann surfaces, where X is connected and F :

X → Y is a non-constant holomorphic mapping. Then, for each y ∈ Y , F−1(y) is a

discrete set in X.[4]

Proof-

Let y ∈ Y ,assume F−1{y} ≠ ϕ, otherwise it is trivial. Suppose it is not true i.e.

there exists x ∈ F−1(y) such that x is a limit point of the set F−1{y}.

Since F is holomorphic, ∃ (ϕ, Ux) and (ψ, Vy) such that ψ ◦F ◦ ϕ−1 : ϕ(Ux) → ψ(Vy)

is a holomorphic function. By translation we can choose (ψ, Vy) such that ψ(y) = 0.

Since x is a limit point of F−1{y} ∃ a sequence {xn} in Ux such that xn → x. This

implies ϕ(xn) converges to ϕ(x), where ψ◦F ◦ϕ−1(ϕ(xn)) = 0 and ψ◦F ◦ϕ−1(ϕ(x)) =

0. Hence, ψ ◦ F ◦ ϕ−1 ≡ 0 on ϕ(U).

This implies U is an open and closed set in X, since X is connected, U = X and F

is a constant function this contradicts the fact that F is non-constant.
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Normal Form Theorem-

Let X,Y be Riemann surfaces and F : X → Y be a holomorphic mapping between

them. Let x ∈ X, then ∃ coordinate charts (U, ϕ) at x ∈ X & (V, ψ) at F (x) and a

positive integer mx such that :

i) ϕ(x) = 0 and ψ(F (x)) = 0

ii) ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is given by ψ ◦ F ◦ ϕ−1(z) = zmx

iii) The integer mx is unique for each x ∈ X [4]

Proof-

Let x ∈ X and y = F (x) ∈ Y , then there exists coordinate charts (U, ϕ) at x

and (V, ψ) at y such that ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is holomorphic. By setting

ϕ′(x′) = ϕ(x′) − ϕ′(x) and ψ′(y′) = ψ(y′) − ψ(y) we can choose coordinate charts

such that F̃ = ψ′ ◦ F ◦ ϕ−1 : ϕ′(U) → ψ′(V ′) has a zero at z = 0 ∈ ϕ′(U)

This implies that ∃ a positive integerm such that F̃ (z) = zmG(z) for all z ∈ ϕ′(U)

where G : ϕ(U) → C is a holomorphic function such that G(0) ̸= 0.

By continuity of G, there exists r > 0 such that G(z) ̸= 0 on D(0, r) ⊂ ϕ′(U).

Hence, G(z) = eH(z), for some holomorphic function H on D(0, r). It follows that

F̃ : D(0, r) → ψ(V ) can be written as z → zmeH(z).

Now, define ϕ̃(z) = zexp

(
H(z)

m

)
for z ∈ D(0, r)

Note that ϕ̃(z) = exp(
H(z)

m
) + ze(

H(z)

m
)
H ′(z)

m
and ϕ̃′(0) = 1.

Since ϕ̃′ is non-zero at z = 0, by inverse function theorem ∃ U ′ ⊂ D(0, r) such that

ϕ̃ is invertible on U ′.

ψ′ ◦ F ◦ (ϕ′−1 ◦ ϕ̃−1)(τ) = F̃ (ϕ̃−1(τ)) = τm, for all τ ∈ ϕ̃(U ′)

ii) Let (ϕ1, U1) ,(ψ1, V1) and (ϕ2, U2),(ψ2, V2) be two coordinates satisfying Normal

9



Form Theorem,i.e. F̃1 = ψ1 ◦ F ◦ ϕ1 : z → zm1 and F̃2 : ψ2 ◦ F ◦ ϕ−1
2 : z → zm2 .

Note that F̃1 = ψ1 ◦ ψ−1
2 ◦ F̃2 ◦ ϕ2 ◦ ϕ−1

1 . Denote h1 = ϕ2 ◦ ϕ−1
1 and h2 = ψ1 ◦ ψ−1

2

zm1 = h2((h1(z))
m2), By power series expansion we can see that zm1 = (

∑
q

aq
q!
(
∑
p

bpzp

p!
)m2q) =

zm2(
∑
q

aq
q!

∑
p

bpzp−1

p!
)m2q.This implies that m1 ≤ m2.

Since, h1 and h2 are biholomorphic, their inverse exists say g1 and g2 for F̃2 =

g2 ◦ F̃1 ◦ g1 we will get m2 ≤ m1.Hence, m1 = m2.

Multiplicity (Definition)- Let F : X → Y be a holomorphic mapping of

Riemann surfaces. Let x ∈ X, the integer mx is called the multiplicity of F at

x ∈ X denoted by Multx(F ).

Note that since F is holomorphic, Multx(F ) ≥ 0.

Ramification Point(Definition)- Let F : X → Y be a holomorphic mapping

of Riemann surfaces. We say x ∈ X is a ramification point iff Multx(F ) ≥ 2.

Branch Point(Definition)- Let F : X → Y be a holomorphic mapping of Rie-

mann surfaces. We say y ∈ Y is a branch point if for some x ∈ F−1{y},Multx(F ) ≥

2.

Theorem- Let X and Y be connected Riemann surfaces and F : X → Y be a

holomorphic mapping.Then,

i)The set of ramification points R(F ) ⊂ X is discrete.

ii)The set of branch points B(F ) ⊂ Y is discrete.

Proof- i)Let x be a limit point of R(F ) and (Ux, ϕ), (VF (x), ψ) be coordinate

charts s.t. ψ ◦ F ◦ ϕ−1(z) = zm on ϕ(Ux) with mx ≥ 2. Then, ∃x′ ∈ Ux such that

Multx′(F ) ≥ 2. Denote y′ = F (x′)

10



Since X is Hausdorff, for each x̃ ∈ F−1(y′) we can choose neighbourhood Ux̃ such

that F−1(y′) ∩ Ux̃ = {x̃}. By Normal Form Theorem at x̃ and y′ for some y′′ ∈ Vy′ ,

F−1(y′′) ∩ Ux̃ has mx̃ many preimages in Ux̃.

|F−1(y′′)| ∩ Ux′ =
∑

x∈F−1(y′)∩Ux

|F−1(y′′)| ∩ Ux̃ ≥ 2 +Multx(F )− 1

This is a contradiction since |F−1(y′′)| ∩ Ux′ =Multx′(F )

ii)The branch points are precisely the image of ramification points, since F is

continuous R(F ) is discrete.

11



2.2 Holomorphic Mappings of Compact and Con-

nected Riemann surfaces

Theorem- Let X and Y be connected Riemann surfaces and F : X → Y be a

non-constant holomorphic mapping. If X is compact, then Y is compact and F is

surjective.[4]

Proof- Since F is a non-constant holomorphic mapping of connected Riemann sur-

faces it is an open map. This implies that F (X) is open in Y . Furthermore, since X

is compact F (X) is compact from continuity of F . Since Y is a connected set F (X)

is non-empty F (X) = Y . Hence, F is surjective and Y is compact.

Theorem- Let X and Y be compact, connected Riemann surfaces and

F : X → Y is a holomorphic mapping on X. Then, Deg(F ) : Y → Z defined by

Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ) is constant.[4]

Proof-

Let Yn = {y ∈ Y |Deg(F )(y) ≥ n)} = Deg(F )−1[n,∞) ,for some n ∈ N.

We want to show that Yn is both open and closed.

i) Let y ∈ Yn and x ∈ F−1(y) ,Then by Normal form theorem ∃ coordinate charts

(U, ϕ) at x and (V, ψ) at y s.t. ψ ◦ F ◦ ϕ−1 : ϕ(U) → ψ(V ) is given by z → zm and

ψ(y) = 0 = ϕ(x).

Let y′ ∈ V , then since ϕ : Ux → ϕ(Ux) is bijective

|F−1(y′)∩Ux| = |(ψ ◦F ◦ϕ−1)−1(ψ(y′))| = mx ≥ |(ψ ◦F ◦ϕ−1)−1(0)| = |F−1(y)∩Ux|.

Then, by definition of degree of a holomorphic map

Deg(F )(y′) =
∑

x∈F−1(y′)

Multx(F ) ≥
∑

x∈F−1(y′)

1 ≥
k∑
i=1

|F−1(y′) ∩ Uxi | =
k∑
i=1

mxi

12



≥
k∑
i=1

|F−1(y) ∩ Uxi | = Deg(F )(y) ≥ n.

Since Deg(F (y)) ≥ n, we have that Deg(F (y′)) ≥ n ,for all y′ ∈ V .

ii)Let {yk}k≥1 be a sequence in Yn such that yk → y in Y . We want to show that

y ∈ Yn i.e. Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ) ≥ n.

Remove the branch points from the sequence yk so that Multx(F ) = 1, for all

x ∈ F−1(yk). Since Deg(F )(yk) ≥ n,it implies that F−1(yk) ⊃ {x1,k, x2,k, ...xn,k}.

Since {xi,k}k≥0 are sequences in X, ∃ convergent subsequences say {xi,kj}j≥0 con-

verging to xi ∈ X,for all i = 1, 2, ...n.

Furthermore, F (xi) = limj→∞ F (xi,kj) = limk→∞ yk = y, for all i = 1, 2..n

Case I- Suppose all x′is are different. Then,

Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ) ≥
n∑
i=1

Multxi(F ) ≥ n

Case II- Let j-many of x′is are same say xi1 = xi2 = ... = xij = x

Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ) ≥
n−j∑
i=1

Multxi(F ) +Multx(F )

By Normal Form Theorem at x ∈ X, ∃ coordinate charts (Ux, ϕ) and (Vy, ψ) with

Vy ⊂ F (Ux) such that ψ ◦ F ◦ ϕ−1 : ϕ(Ux) → ψ(Vy) is given by z → zm

Since x is a limit point in X, ∃N ∈ N s.t. xi,kj ∈ Ux ,for all j ≥ N ,i = 1, 2, .., j. This

implies j ≤ |F−1(yk) ∩ Ux| = m. Hence,

Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ) ≥
n−j∑
i=1

Multxi(F ) +Multx(F ) ≥ n.

By definition, Yn ⊆ Yn−1. Since Y is connected, Either Yn = ϕ or Yn = Y . Let

y ∈ Y with Deg(F )(y) = k, then y ∈ Yk but y ̸∈ Yk+1.This implies that Yk+1 = ϕ

and Yn = Y for all n ≤ k.

13



This means Deg(F )(y) ≥ k, for all y ∈ Y and Deg(F )(y) < k for all y ∈ Y .

Hence, Deg(F )(y) = k ,for all y ∈ Y .

Theorem(Riemann-Hurwitz Formula)-

Let X and Y be compact and connected Riemann surfaces & F : X → Y is a holo-

morphic mapping. Then,

2g(X)− 2 = (2g(Y )− 2)Deg(F ) +
∑
x∈X

(Multx(F )− 1)

[4]

Proof- Let FY = {Ti|i = 1, 2, .., n} be a triangulation for Y [1]. Let y ∈ B(F )be a

branch point, then y ∈ Ti0 , for some i0 = 1, ..n; If y ∈ Int(Ti0) join y with each vertex

of Ti0. This decomposes Ti0 into three triangles. If y ∈ Edge(Ti0), then y ∈ Ti0 ∩ Ti1
joint y with vertices of Ti0 and Ti1.

Hence,we can assume a tringulation exists such that all ramification points are

vertices in the triangulation.

If there exists y1, y2 ∈ B(F ) such that there is an edge [y1, y2]between them, then

choose a point y′ ∈ [y1, y2] and join it with the vertices of the triangle it is contained

in. Hence, this implies that there is no edge with both points as ramification points.

Suppose the tringulation of Y has V vertices, E edges and F faces.

Since d = Deg(F )(y) =
∑

x∈F−1(y)

Multx(F ). For y ∈ Vu ,|F−1(y)| = d and for

y ∈ Vb ,|F−1(y)| = d−
∑

x∈F−1(y)

(Multx(F )− 1).

14



The no of vertices in the pullback triangulation is given by[4]:

W =
∑
y∈Vu

|F−1(y)|+
∑
y∈Vb

|F−1(y)|

W =
∑
y∈Vu

d+
∑
y∈Vb

(d−
∑

x∈F−1(y)

(Multx(F )− 1))

W = dV −
∑

x∈F−1(y)

(Multx(F )− 1)

By definition of Euler Characteristic,

χ(X) = V (X)−E(X)+F (X) = W−dE+dF = d(V−E+F )+
∑

x∈F−1(y)

(Multx(F )−1)

χ(X) = d.χ(Y ) +
∑

x∈F−1(y)

(Multx(F )− 1)

BY theorem on classification of orientable surfaces[2],

(2 − 2g(Y )) = d(2 − 2g(X)) +
∑

x∈F−1(y)

(Multx(F ) − 1), where g(X), g(Y ) are

genuses of the surfaces X, Y .

Ramification Degree-

Let F : X → Y be a non-constant map of compact and connected Riemann surfaces.

We say that the integer R(F ) =
∑
x∈X

(Multx(F ) − 1) is the Ramification degree of

the non-constant holomorphic map of Riemann surfaces.

Note that R(F ) is an even integer.

Corollary-

Let F : X → Y is a non-constant holomorphic map of compact connected Riemann

surfaces. Then, g(Y ) ≤ g(X).[4]
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Proof- Since Multx(F ) ≥ 0, we get Deg(F ) ≥ 0, R(F ) ≥ 0. By Riemann-Hurwitz

formula, 2g(X)− 2 ≥ (2g(Y )− 2)Deg(F ) ≥ 2g(Y )− 2, This implies g(X) ≥ g(Y ).

Corollary(Sufficient condition for a unramified map)-

Let X, Y, F be as above. If g(X) = g(Y ), then F is unramified.[4]

Proof- Put g(X) = g(Y ) in the Riemann-Hurwitz formula we get that R(F ) = 0.

Corollary(Necessary condition for a unramified map)-

Let X, Y, F : X → Y be as above. If F is unramified, then [4]

i)g(X) = 1 =⇒ g(Y ) = 1

ii) If g(X) > 1 and Deg(F ) > 1, then g(Y ) > 1 and Deg(F )|(g(X)− 1).

Proof-

By rearranging the Riemann-Hurwitz formula,

g(Y ) =
g(X)

Deg(F )
+
Deg(F )− 1

Deg(F )
− R(F )

2Deg(F )

Put R(F ) = 0,

g(Y ) =
g(X)

Deg(F )
+
Deg(F )− 1

Deg(F )

For g(X) > 1, g(Y ) > 1 and for g(X) = 1, g(Y ) = 1

Corollary(On holomorphic covering maps to Riemann sphere)-

Let X be a compact and connected Riemann surface and F : X → P1 is a non-

constant holomorphic map. If F is unramified, then F is necessarily an isomor-

phism.[4]

Proof-

Putting R(F ) = 0 and g(Y ) = 0 in the Riemann-Hurwitz formula, we get Deg(F ) =

1− g(X).This implies that Deg(F ) ≤ 1 since Deg(F ) ≥ 1. Deg(F ) = 1 and F is an

isomorphism of Riemann surfaces.
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Chapter 3

Complex Line Bundles on a

Riemann Surface

3.1 Introduction

Complex Line Bundle(Definition)-

Let L and M be smooth manifolds. We say that L along with a map π : L → M is

a complex line bundle if:

i) For every p ∈ M ,there exists Ux ⊂ M and FUx : π−1(Ux) → Ux × C defined as

v → (π(v), fU(v)) is a diffeomorphism.

ii) If Uα, Uβ satisfies (i), s.t. Uα ∩ Uβ = ϕ, then ∃gαβ : Uα ∩ Uβ → C∗ where,

FUα ◦ F−1
Uβ

: (Uα ∩ Uβ)× C → (Uα ∩ Uβ)× C is given by (x, λ) → (x, gαβ(λ))

Note that the fiber Lx = π−1(x) = {x} × C is isomorphic to C as a complex

vector space.
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The 1-cocycle condition-

Consider Uα, Uβ, Uγ ⊂M satisfying (i) and Uα ∩ Uβ ∩ Uγ ̸= ϕ, then,

(FUα ◦ F−1
Uβ

) ◦ (FUβ
◦ F−1

Uγ
) ◦ (FUγ ◦ F−1

Uα
) = Id on (Uα ∩ Uβ ∩ Uγ)× C.

This implies that gαβ(x) · gβγ(x) · gγα(x) = 1 for each x ∈ Uα ∩ Uβ ∩ Uγ[4]

Morphism of Complex Line Bundle(Definition)-

Let (L, π) and (L′, π′) be two complex line bundles overM . We say a map F : L→ L′

is a morphism of complex line bundles if :

i) π′ ◦ F ◦ π = idX

ii)Fx = F |Lx : Lx → L′
x is a map of complex vector spaces.

Isomorphism of Complex Line Bundles(Definition)-

We say that two complex line bundles (L, π) and (L′, π′) over theM are isomorphic if

∃ complex line bundle morphisms F : L→ L′ and G : L′ → L such that F ◦G = IdL′

and G ◦ F = IdL.

3.2 Constrution of a complex line bundle

Proppsition-(Primitive construction of complex line bundle)

Let {Uα|α ∈ I} be an open cover of M and {gαβ : Uα ∩ Uβ → C∗|α, β ∈ I} be a

collection of transition data satisfying the 1-cocycle condition. Then,

i) ∃ a C-line bundle (L{gαβ}, π) such that the transition data of L is {gαβ}.

ii)If (L, π) is a complex line bundle with a trivializing cover {Uα} and transition data

{gαβ}, then L ∼= L{gαβ} [4].
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Proof-

Consider the space Y =
⊔
α∈I

Uα×C×{α} equipped with disjoint union topology. We

define a relation ∼ on Y by (x, z, α) ∼ (x,w, β) iff w = gαβ(x)z.

i)Reflexivity- (x, z, α) ∼ (x, z, α) since z = 1.z = gαα(x)z

ii) Symmetry- If (x, z, α) ∼ (x,w, β) then z = gαβ(x)w which implies z = gβα(x)w

since gαβ(x) ∈ C∗

iii)Transitivity- Let (x, z, α) ∼ (x,w, β) ∼ (x, τ, γ), then τ = gβγ(x)w = gβγ(x)gαβ(x)z.

Since {gαβ} satisfies the 1-cocycle condition gαβ(x)gβγ(x)gγα(x) = 1. This implies

that τ = gαγ(x)z Hence, (x, z, α) ∼ (x, τ, γ).

Hence ∼ is an equivalence relation over Y . We define L{gαβ} = Y/ ∼

The quotient map q : Y → Y/ ∼ given by (x, z, α) → [(x, z, α)] induces the quotient

topology on L{gαβ}.i.e. Ũ ⊂ Y/ ∼ is open iff q−1(Ũ) is open in Y .

We define the map π : L{gαβ} →M by [(x, z, α)] → x

Then q−1(π−1(Uα)) =
⊔
β∈J

(Uα ∩ Uβ)× C× {β} where J = {β ∈ I|Uα ∩ Uβ ̸= ϕ}.

Since each of these are open, π−1(Uα) is open in L{gαβ}. Furthermore, we have⋃
α∈I

π−1(Uα) = L{gαβ}. Hence, {π−1(Uα)|α ∈ I} forms an open cover of L{gαβ}.

We define FUα : π−1(Uα) → Uα ×C× {α} by [(x, z, α)] → (x, z, α) by definition,

FUα is bijective. For V ⊂ Uα×C×{α}(open), q−1(F−1
Uα

(V )) =
⊔
β∈J

V ∩(Uβ×C×{β}).

This shows that FUα is a continuous map.

For Ũ ⊂ π−1(Uα)(open) q
−1(Ũ) =

⊔
β∈J π(Ũ ∩ Uβ) × Ω × {β} for some Ω ⊂

C(open). Now, FUα(Ũ) = π(Ũ)× Ω× {α}. Hence, FUα is an open map.

Now, FUβ
◦ F−1

α : (Uα ∩ Uβ) × C × {α} → (Uα ∩ Uβ) × C × {β} is given by
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(x, z, α) → [(x, z, α)] = [(x, gαβ(x)z, β)] → (x, gβα(x)z, β)

Since FUβ
◦F−1

Uα is linear in both variables it is a diffeomorphism. Hence (π−1(Uα), FUα)

gives a collection of smoothly compatible coordinate chart on L{gαβ} giving it a

smooth manifold structure.

ii) Let (L, π) be another complex line bundle with trivializing cover Uα and tran-

sition data {gαβ}. Define F : L{gαβ} → L by [(x, z, α)] → F−1
Uα

(x, z) where FUα is

the local trivialization of L on Uα.

Since FUβ
◦ F−1

Uα(x, z) = (x, gαβ(x)z) we get that F−1
Uα

(x, z) = F−1
Uβ

(x, gαβ(x)z)

F ([(x, z, α)]) = F ([(x, gαβ(x)z, β)]) hence, F is well defined.

F |π−1(x) sends [(x, z, α)] + c[(x,w, α)] = [(x, z + cw, α)] → F−1
Uα

(x, z + cw) =

F−1
Uα

(x, z) + cF−1
Uα

(x,w) for c ∈ C. Hence, F is C-linear in each fiber.

Similarly, the map defined as G : L → L{gαβ} as vx → [(x, fUα(vx), α)] is a

morphism of complex line bundles where FUα : π−1(Uα) → Uα × C is the local

trivialization. Since F and G are inverses of each other, L ∼= L{gαβ}

3.3 Sections of Complex Line Bundles

Section(Definition)- Let (L, π) be a complex line bundle over M . We say a map

s :M → L is a section if π ◦ s = idM .

Nowhere vanishing Section(Definition)- Let U ⊂ M be open. We say ξ ∈

Γ(U,L|U) is a framing section over U ⊂M if there exists trivializing neighbourhood

U ′
x such that FU ′

x
(ξ(x)) ̸= (x, 0) for all x ∈ X.
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Well-definedness of nowhere vanishing section-

Let U and V be trivializing neighbourhoods containing x and suppose that ξ is

framing in coordinates of U then,

FV (ξ(x)) = FV ◦ F−1
U ◦ FU(ξ(x))

FV (ξ(x)) = FV ◦ F−1
U ◦ FU((x, z)) for some z ̸= 0 in C

FV (ξ(x)) = (x, gV U(x)z)

Since gV U(x) ∈ C∗ ξ is well-defined.

Proposition- Let (L, π) be a line bundle over M . Then, L ∼= M × C iff ∃ a

nowhere vanishing section ξ :M → L over M .[4]

Proof- i) Let ϕ : L → M × C be a complex line bundle isomorphism. Define

ξ : M → L by ξ(x) = ϕ−1(x, 1). Since ϕ : L → M × C is a diffeomorphism ξ is a

nowhere vanishing section.

ii) Let ξ ∈ Γ(M,L) be a nowhere vanishing section and v ∈ Lx for some x ∈

M ∃Ux ⊂ M trivializing FUx(ξ(x)) = (x, fU(ξ(x))) since ξ(x) ̸= 0, we can write

FUx(v) = (x, λ(v).fU(ξ(x))) where λ(v) =
fU(v)

fU(ξ(x))
∈ C

If Vx ⊂M is another trivializing nbhd then fV (v
′) = gV U(x)fU(v

′) for all v′ ∈ Lx,

λ′(v) =
fV (v)

fV (ξ(x))
=

fU(v)

fU(ξ(x))
= λ(v), hence λ is independent of choice of trivializing

coordinates.

Define F : L→M × C by v → (π(v), λ(v))

F |Lx(vx + wx) = (x, λ(vx + wx)) = (x, λ(vx) + λ(wx)) = F |Lx(vx) + F |Lx(wx)

The map G : M × C → L given by (x, z) → vx where vx = z.ξUx(x) is inverse of

F, hence L ∼= M × C.
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Action of C∗-

Define C∗×L→ L by λ.v = F−1
U (π(v), λ.fU(v)) ,where U is a trivializing neighbour-

hood at π(v).

Let V be another trivializing neighbourhood at π(v) = x, then

FU ◦ F−1
V (x, λ.fV (v)) = (x, gUV (x).λ.fV (v))

FU ◦ F−1
V (x, λ.fV (v)) = (x, gUV (x).λ.gV U(x)fU(v)) = (x, λ.fU(v))

This implies that F−1
V (x, λ.fV (v)) = F−1

U (x, λ.fU(v))

Corollary(Framing property)-

Let U ⊂M be a trivializing neighbourhood. Then, for each s ∈ Γ(U,L) there exists

sU : U → C such that s(x) = sU(x).ξU(x), for each x ∈ U , where ξU is a nowhere

vanishing section of U [4].

Proof-

Let ξU ∈ Γ(U,L) be a framing section then by similar process as above,

FU(s(x)) = (x, λ(s(x).1)

s(x) = F−1
U (x, λ(s(x)).1)

Define sU : U → C by sU(x) = λ(s(x)) By definition s(x) = sU(x).ξ(x)

Framing sections under change of coordinates-

Let U and V be trivializing neighbourhoods with frames ξU and ξV . Let x ∈ U ∩ V ,

then FV ◦ F−1
U (x, 1) = (x, gV U(x)) which implies that F−1

U (x, 1) = F−1
V (x, gV U(x))

and ξU(x) = gV U(x)ξV (x)

Proposition(Description via sections)-

Let (L, π) be a complex line bundle over M . Then s : M → L is a global section

iff there exists open cover of trivializing neighbourhoods {Uα|α ∈ I} and a family

of functions {sα : Uα → C|α ∈ I} such that sα(x) = gαβ(x)sβ(x) , for every x ∈
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Uα ∩ Uβ[4].

Proof-

i) Let s ∈ Γ(M,L) be a global section and {Uα|α ∈ I} be a trivializing cover of M .

Then by above corollary for each Uα, ∃sα : Uα → C s.t. s(x) = sα(x)ξα(x) for all

x ∈ Uα.

Let Uα ∩ Uβ ̸= ϕ, then ξα = gβαξβ on Uα ∩ Uβ.

Since, s is globally defined sαξα = sβξβ = sβ(gαβξα). It follows that sα = gαβsβ

ii) Define s|Uα = sαξα then π ◦ s|Uα = idUα

On Uα ∩ Uβ,

s|Uα = sαξα = (gαβsβ)(gβαξβ) = sβξβ = s|Uβ

Hence, s is globally defined.
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Chapter 4

Hormander’s Theorem

4.1 Introduction

- The del-bar problem has been central to field of complex analysis since it captures

holomorphic information about the complex plane separating it from the study of

real structure on it. Hormander’s approach that we would study is based on method-

ologies of complex Hilbert spaces- functional analytic approach, where the underlying

notion would be captured by recognizing the function spaces as spaces of sections of

a trivial line bundle equipped with a Hermitian metric.

4.2 Hormander’s Theorem on the complex plane

Consider a complex-valued function f ∈ C∞(C), then ∂f : C → T
∗(0,1)
C defined as

∂f

∂z
dz is a (0, 1) form on C. Let α ∈ Γ(C, T ∗(0,1)

C ) be an arbitrary (0, 1) form then
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α(z) = g(z)dz for all z ∈ C. We want to know when such a form can be written as

α = ∂f , for some f ∈ C∞(C). This is equivalent to solving the problem
∂f

∂z
= g ,

for some function f ∈ C∞(C).

The Hilbert space of solutions

The space of all smooth functions C∞(C) under pointwise addition and scalar mul-

tiplication forms a C-vector space [4]. To make it a inner product space we define

the inner product ⟨, ⟩ : C∞(C)×C∞(C) → C with the weight e−|z|2 by the expression

⟨f, g⟩ = i

2

∫
C

f(z)g(z)e−|z|2dz ∧ dz

Prptn- ⟨, ⟩ : C∞(C)× C∞(C) → C defined as above is an inner product.

Proof-

i) Bilinearity-

⟨f1 + f2, g⟩ =
i

2

∫
C

(f1 + f2)ge
−|z|2dz ∧ dz

=
i

2

∫
C

f1ge
−|z|2dz ∧ dz + i

2

∫
C

f2ge
−|z|2dz ∧ dz

= ⟨f1, g⟩+ ⟨f2, g⟩

⟨f, λg⟩ = i

2

∫
C

f.λge−|z|2dz ∧ dz = λ⟨f, g⟩

ii) Non-negativity-

Let f ∈ C∞(C) , then g(z) = |f(z)|2e−|z|2 is a non-negative function on C.

Taking integral on both sides, we get i
2

∫
C

g(z)dz ∧ dz =
∫
R2

g(x, y)dxdy ≥ 0

i.e. ⟨f, f⟩ ≥ 0
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Furthermore, ⟨f, f⟩ = 0 implies |f(z)| = 0 for all z ∈ C and hence f = 0.

iii) Conjugate Symmetry-

⟨g, f⟩ = −i
2

∫
C
g(z)f(z)e−|z|2dz ∧ dz = i

2

∫
C
g(z)f(z)e−|z|2dz ∧ dz = ⟨f, g⟩

Define V = {f ∈ C∞(C)| such that ⟨f, f⟩ <∞}.

Let f, g ∈ V By Cauchy-Schwarz inequality |⟨f, g⟩|2 ≤ |⟨f, f⟩|2.|⟨g, g⟩|2 <∞. Hence

⟨, ⟩ is well-defined on V .

⟨f + g, f + g⟩ = ⟨f, f⟩+ ⟨f, g⟩+ ⟨g, f⟩+ ⟨g, g⟩ <∞

⟨λf, λf⟩ = |λ|2⟨f, f⟩ <∞ for all λ ∈ C

This implies that (V, ⟨, ⟩) is an inner product space. The inner product space V

can be equipped with topology induced by the L2-norm given by ||.||L2 = ⟨, ⟩. Denote

L2(e−|z|2) = V
||.||L2

, then the completion H is the Hilbert space wrt the L2- norm ||.||.

Such a choice of weight allows us to accomodate functions whose growth rate is

lesser than the exponentials.
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Densely defined Linear Operator(Definition)-

Let V,W be two topological vector spaces. We say T is a densely defined linear

operator if ∃a dense subspace D(T ) ⊂ V s.t. T : D(T ) → W is a linear operator.[3]

Adjoint Operator(Definition)-

Let V,W be two topological vector spaces and T : D(T ) → W be a densely defined

linear operator where D(T ) ⊂ V is a dense subspace. A densely defined operator

T ∗ : D(T ∗) → V is said to be adjoint of T if ∃ a dense subspace D(T ∗) ⊂ V such

that

⟨Tψ, ϕ⟩ = ⟨ψ, T ∗ϕ⟩ for all ϕ ∈ D(T ∗) and ψ ∈ D(T )[3]

The del bar operator-

We can define ∂ : C∞(C) → C∞(C) by f → ∂f

∂z
. Note that ∂ is a C-linear

operator on the space C∞(C).

∂(f + g) =
∂f

∂z
+
∂g

∂z
= ∂f + ∂g for all f, g ∈ C∞C

∂(cf) =
∂

∂z
(cf) = c.∂f for all c ∈ C and f ∈ C∞(C)

The space of compactly supported smooth functions C∞
c (C) is dense in the Hilbert

space L2(e−|z|2). Hence, we see that the linear operator ∂ is densely defined on

L2(e−|z|2). We construct its adjoint operator as follows[4]:

Let f, g ∈ C∞
c (C)

⟨g, ∂f⟩ = i

2

∫
C

g
∂f

∂z
e−|z|2dz ∧ dz = i

2

∫
C

g
∂f

∂z
e−|z|2dz ∧ dz
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From integration by parts,

= − i

2

∫
C

f
∂

∂z
(ge−|z|2)dz ∧ dz = − i

2

∫
C

fe|z|
2 ∂

∂z
(ge−|z|2)e−|z|2dz ∧ dz

The adjoint operator of del bar(Definition)-

Define ∂
∗
: C∞

c (C) → C∞
c (C) by ∂∗g = −e|z|2 ∂

∂z
(ge−|z|2)

We will get ⟨g, ∂f⟩ = ⟨∂∗g, f⟩ for all f, g ∈ C∞
c (C)

We define ∂ : L2(e−|z|2) → L2(e−|z|2) by f → ∂f , where ∂f satisfies

⟨∂f, g⟩ = ⟨f, ∂∗g⟩ for all g ∈ C∞
c (C)

Statement- There exists f ∈ L2(e−|z|2) such that ∂f /∈ L2(e−|z|2) [4].

Consider the radial function f(z) = χC−B(0,1)(z) ,then the L2 norm of f is given

by ⟨f, f⟩ = i

2

∫
C−B(0,1)

e−|z|2dz ∧ dz. In polar coordinates, we get

⟨f, f⟩ =
∞∫

r=1

2π∫
θ=0

e−r
2

rdrdθ = π

∞∫
t=1

e−tdt <∞ =⇒ f ∈ H

Let ϕ ∈ C∞
c (C),then

⟨∂f, ϕ⟩ = ⟨f, ∂∗ϕ⟩ = − i
2

∫
C
f ∂
∂z
(ϕe−|z|2)dz ∧ dz

Now for any smooth function g,

∂g

∂z
=
∂g

∂r

∂r

∂z
+
∂g

∂θ

∂θ

∂z

r2 = zz =⇒ 2r
∂r

∂z
= z =⇒ ∂r

∂z
=
eiθ

2
and
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ei2θ =
z

z
=⇒ 2iei2θ

∂θ

∂z
=

−z
z2

=⇒ ∂θ

∂z
=
ieiθ

2r

∂g

∂z
=
∂g

∂r

eiθ

2
+
∂g

∂θ

ieiθ

2r

Choose ϕ(z) = e|z|
2
eiθh(|z|), for some compactly supported smooth radial func-

tion h on C

⟨∂f, ϕ⟩ = − i

2

∫
C

f
∂

∂z
(e−iθh(|z|))dz ∧ dz

= − i

2

∫
C

f

(
e−iθ

∂h

∂r

eiθ

2
+ h(r)(−ie−iθ)ie

iθ

2r

)
dz ∧ dz

= − i

2

∫
C

f

2

(
∂h

∂r
+
h

r

)
dz ∧ dz

Integrating via polar coordinates

= −
∞∫

r=0

2π∫
θ=0

f

2

(
∂h

∂r
+
h

r

)
rdrdθ = −

∞∫
r=0

2π∫
θ=0

f

2

∂

∂r
(rh)drdθ = −π

∞∫
r=1

∂

∂r
(rh)dr

We get that ⟨∂f, ϕ⟩ = πh(1)

We define a sequence of compactly supported smooth functions {ϕϵ} taking value

π at |z| = 1 as follows: Let χ : [0,∞) → [0, 1] be a compactly supported smooth

function then define hϵ(x) =
1

x
exp

(
−(x− 1)2

ϵ

)
χ(x)

Now as ϵ→ 0, ϕϵ → 0 uniformly
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||ϕϵ||2 =
i

2

∫
C

e2|z|
2 1

|z|2
e

−2(|z|−1)2

ϵ χ(|z|)e−|z|2dz ∧ dz =
2∫

r= 1
2

2π∫
θ=0

e−
2(r−1)2

ϵ
er

2

r
drdθ

=2π

2∫
r= 1

2

e−
2(r−1)2

ϵ
er

2

r
dr ≤ A.

2∫
r= 1

2

e
−2(r−1)2

ϵ dr

This implies that ||ϕϵ|| → 0 as ϵ→ 0

By Cauchy-Schwarz inequality, |⟨∂f, ϕ⟩|2 ≤ ||∂f ||2||ϕϵ||2

π2|h(1)|2 ≤ ||∂f ||2||ϕϵ||2

Since π2|hϵ(1)|2 = 1 for all ϵ > 0, this is a contradiction.

We define D(∂) = {f ∈ L2(e−|z|2)|∂f ∈ L2(e−|z|2)} as the domain of ∂.

Let f ∈ C∞
c (C), then f is zero except a compact set and K = supp(∂f

∂z
) is compact

in C. Hence, we get

⟨∂f
∂z
,
∂f

∂z
⟩ = i

2

∫
K

|∂f
∂z

|2e−|z|2dz ∧ dz <∞

It follows that C∞
c (C) ⊂ D(∂) =⇒ D(∂) is dense in L2(e−|z|2).
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Hahn-Banach theorem for anti-linear functionals-

Suppose T : W → C is an anti-linear functional, where W ⊂ V is a subspace

Then we can write T (v) = T1(v) + iT2(v)

T (iv) = −iT (v) =⇒ T1(iv) + iT2(iv) = −iT1(v) + T2(v)

T1(v) = −T2(iv) and T2(v) = T1(iv)

Hence T (v) = T1(v) + iT1(iv)

T1(v) =
T (v) + T (v)

2
For r ∈ R

T1(v + r.w) =
T (v + rw) + T (v + rw)

2
=
T (v) + rT (w)

2
+
T (v) + rT (w)

2

=
T (v) + T (v)

2
+ r.

T (w) + T (w)

2
= T1(v) + r.T1(w)

This implies T1(v) is R-linear.

By Hahn-Banach Theorem for R-linear functionals, ∃ T̃1 : V → R such that

T̃1|W = T1. Define T̃ : V → C by T̃ (v) = T̃1(v) + iT̃1(iv), then T̃ is R-linear such

that T̃ |W = T

T̃ (iv) = T̃1(iv) + iT̃1(−v) = T̃1(iv)− iT̃1(v) = −i(iT̃ (iv) + T̃ (v)) = −iT̃ (v) Since the

extension is C-linear, Hahn-Banach theorem works for anti-linear functionals.

L2-Estimates of the ∂
∗
operator-

Let f ∈ C∞
c (C),then[4]

⟨∂∗f, ∂∗f⟩ = ⟨∂(∂∗f), f⟩ = i

2

∫
C

∂

∂z

(
−e|z|2 ∂

∂z
(f(z)e−|z|2)

)
fe−|z|2dz ∧ dz

= − i

2

∫
C

∂

∂z

(
e|z|

2

(
∂f

∂z
e−|z|2 + fe−|z|2(−z)

))
fe−|z|2dz ∧ dz
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= − i

2

∫
C

∂

∂z

(
∂f

∂z
− fz

)
fe−|z|2dz ∧ dz

= − i

2

∫
C

(
∂2f

∂z∂z
− ∂f

∂z
z − f

)
fe−|z|2dz ∧ dz

= − i

2

∫
C

(
∂2f

∂z∂z
− ∂f

∂z
z

)
fe−|z|2dz ∧ dz + i

2

∫
C

|f |2e−|z|2dz ∧ dz

= − i

2

∫
C

∂

∂z

(
∂f

∂z
e−|z|2

)
fdz ∧ dz + i

2

∫
C

|f |2e−|z|2dz ∧ dz

By using integrtion by parts on C,

=
i

2

∫
C

∂f

∂z
e−|z|2 ∂f

∂z
dz ∧ dz + i

2

∫
C

|f |2e−|z|2dz ∧ dz

Now
∂f

∂z
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
, on taking conjugate we get

∂f

∂z
=

1

2

(
∂f

∂x
− i

∂f

∂y

)
=
∂f

∂z

=
i

2

∫
C

∣∣∣∣∂f∂z
∣∣∣∣2 e−|z|2dz ∧ dz + i

2

∫
C

|f |2e−|z|2dz ∧ dz

⟨∂∗f, ∂∗f⟩ = ⟨∂f, ∂f⟩+ ⟨f, f⟩
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Hormander’s Theorem in C-

Let L2(e−|z|2) be the Hilbert space of complex valued functions defined as above

and ∂ : D(∂) → L2(e−|z|2) be the del bar operator densely defined. Then, [4]

i)for all g ∈ L2(e−|z|2) there exists f ∈ D(∂) such that ∂f = g.

ii) Furthermore f, g satisfies the estimates∫
C

|f |2e−|z|2dz ∧ dz ≤
∫
C

|g|2e−|z|2dz ∧ dz

Proof- Consider the adjoint operator of del bar ∂
∗
: C∞

c (C) → C∞
c (C) then the

space ∂
∗
(C∞

c (C)) is a linear subspace of L2(e−|z|2).

Let g ∈ L2(e−|z|2) , we define λ : ∂
∗
(C∞

c (C)) → C by

λ(∂
∗
ϕ) = ⟨g, ϕ⟩

λ(ξ.∂
∗
ϕ) = ξ.λ(∂

∗
ϕ) for all ξ ∈ C.

By Cauchy-schwarz inequality, |⟨g, ϕ⟩| ≤ ||g||.||ϕ|| ≤ ||g||.||∂∗ϕ||

i.e. |λ(∂∗ϕ)|2 ≤ ||g||.||∂∗ϕ|| This implies λ : ∂
∗
(C∞

c ) → C is a bounded and anti-

linear.

By Hahn-Banach theorem for anti-linear functionals ∃ λ̃ : L2(e−|z|2) → C such

that λ̃|∂∗(C∞
c (C)) = λ and ||λ||(C∞

c )∗ = ||λ̃||L2(e−|z|2 )

By Riesz- Representation theorem, there exists f ∈ L2(e−|z|2) such that

for λ̃ : L2(e−|z|2) → C, λ̃(h) = ⟨f, h⟩ for all h ∈ L2(e−|z|2) and ||λ̃||L2(e−|z|2 ) = ||f ||

For all ϕ ∈ C∞
c (C) put h = ∂

∗
ϕ and we get ⟨f, ∂∗ϕ⟩ = λ̃(∂

∗
ϕ) = λ(∂

∗
ϕ) = ⟨g, ϕ⟩

This implies g =
∂f

∂z
.
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Furthermore, ||λ̃|| = ||f || ≤ ||g|| i.e.
∫
C

|f |2e−|z|2dz ∧ dz ≤
∫
C

|g|2e−|z|2dz ∧ dz.

Hence, the theorem allows us to solve the del bar equation and says that the

derivatives will have the tendency to escape the solution space as evident from the

example given in the Statement 1.
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4.3 Hormander’s Theorem on a Riemann surface

Consider a Riemann surface X and H → X be a holomorphic line bundle with a

Hermitian metric h = e−ϕ and we want to generalize the del-bar problem for X, for

this purpose the ∂ operator will be defined as a connection on space of smooth (0,1)-

forms taking them to H-valued (0,1) forms.

Del-Bar Operator(Definition)-

Let s ∈ Γ(X,H) be a smooth section, then ∃ collection of trivializing neigbourhoods

{Uα} with frames {ξα} and transition functions {gαβ} such that s|Uα = fαξα where

fα : Uα → C is smooth.

Define ∂s|Uα = ∂fα ⊗ ξα

On Uα ∩ Uβ, ξα = gβαξβ, and

we get ∂s|Uα = ∂fα ⊗ ξα = ∂fα ⊗ gβαξβ = gβα∂fα ⊗ ξβ

Since H is holomorphic ,gβα is holomorphic ∂s|Uα = ∂(gβαfα)⊗ ξβ

Now, fβξβ = fαξα = fαgβαξβ implying fβ = fαgβα

=⇒ ∂s|Uα = ∂fβ ⊗ ξβ = ∂s|Uβ

This implies ∂ : Γ(X,H) → Γ(X,T
∗(0,1)
X ⊗H) is well defined[4].
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Holomorphic Line bundle(Definition)- Let H and X be complex manifolds

and π : H → X be a map. We say the pair (π,H) is a holomophic line bundle iff:

i)(π,H) is a complex line bundle

ii)For each trivializing nbhd U , the trivializing map FU : π−1(U) → U × C is a

holomorphic map.

Note that since FU are diffeomorphism, by inverse function theorem they are

biholomorpism as well. This implies that the transition data gUV : U ∩ V → C∗ are

holomorphic.

Hermitian Metric(Definition)-

We say a smooth section h : X → H∗⊗H∗ defined as x→ h|x is a Hermitian metric

for the line bundle H if for all x ∈ X, h|x : Hx ⊗Hx → C satisfies:

i)h|x(v, v) > 0 and h|x(v, v) = 0 iff v = 0 for all v ∈ Hx

ii)h|x(v + λw, u) = h|x(v, u) + λh|x(w, u) for all v, w, u ∈ Hx and λ ∈ C

iii)h|x(v, w) = h|x(w, v) for all v, w ∈ Hx

Integration of a (1,1)-form(Definition)-

Let X be a Riemann surface with a triangulation T = {Ti|i ∈ I} such that for

each triangle Ti ∈ T , Ti ⊂ Ui, where (Ui, zi) is a trivializing neighbourhood and

α ∈ Γ(X,Λ
(1,1)
X ) be a smooth (1,1) form on X. Then, α|Ui

= fidzi ∧ dzi We define

∫
X

α =
∑
i∈I

i

2

∫
zi(Ti)

fi(zi)dzi ∧ dzi
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Here, for defining integration of (1,1)- forms the Riemann surface is assumed to

be triangulated, however it is possible to give any Riemann surface a triangulation

by solving Dirichlet problem on it[1].

Inner product structure on Γ(X,H)

Note that under pointwise addition and scalar multiplication both the spaces are

C-vector spaces[4]. We want to define an inner product structure for doing Hilbert

space theory with del-bar operator.

Let ω ∈ Γ(X,Λ
∗(1,1)
X ) be a positive (1,1) form on X and s, t ∈ Γ(X,H) be smooth

section. For each x ∈ X ,∃Ux ⊂ X trivializing nbhd for H at x ∈ X an U ′
x trivializing

for T
∗(1,1)
X at x. Therefore, U = Ux ∩ U ′

x trivializes both H and T
∗(1,1)
X at x ∈ X.

Therefore, we can say that there exists a collection of trivializing neighborhoods

{Uα} such that s = fαξα and t = gαξα and ω = e−ηαdzα ∧ dzα on Uα.

Consider a Hermitian metric h : X → H∗ ⊗H∗ for the line bundle H.

For each x ∈ X,

h|x(s(x), t(x)) = h|x(fα(x)ξα(x), gα(x)ξα(x)) = fα(x)gα(x)h(ξα(x), ξα(x))

Prptn- h(s, t) : X → C is well-defined.

Proof- Let Uα and Uβ be trivializing neighbourhoods such that Uα ∩ Uβ ̸= ϕ.

On Uα ∩ Uβ,

h(s, t) = fαgαh(ξα, ξα) = fαgαh(g
′
βαξβ, g

′
βαξβ)

h(s, t) = (g′αβfα)(g
′
βαgα)h(ξβ, ξβ) = fβgβh(ξβ, ξβ)
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Thus, h(s, t) is well-defined on X.

Define s∧ω t = h(s, t)ω, where on each Uα, s∧ω t = fαgαe
−ϕαe−ηαdzα ∧ dzα Since

both h(s, t) and ω are globally defined s ∧ω t is a global (1,1) form.

We define ⟨s, t⟩ =
∫
X

s ∧ω t for s, t ∈ Γ(X,H).

Proposition- The map ⟨, ⟩ : Γ(X,H) × Γ(X,H) → C is an inner product and

the space (Γ(X,H), ⟨, ⟩) is an inner product space.

Proof- i) ⟨s, s⟩ =
∫
X

h(s, s)ω, Since h(s, s) ≥ 0 and ω ≥ 0 on X, ⟨s, s⟩ ≥ 0.

ii)⟨s, t⟩ =
∫
X

h(s, t)ω =

∫
X

h(t, s)ω = ⟨t, s⟩

Hence, ⟨⟩ is an inner product on Γ(X,H).

Consider the space V = {s ∈ Γ(X,H)|⟨s, s⟩ <∞}, then V ⊂ Γ(X,H) is a vector

subspace.

Proof- Let f, g ∈ V then |⟨f, g⟩|2 ≤ ||f |||2|g||2 <∞

⟨f + g, f + g⟩ = ⟨f, f⟩+ 2Re(⟨f, g⟩) + ⟨g, g⟩ <∞

⟨λf, λf⟩ = |λ|2⟨f, f⟩ <∞ for all λ ∈ C

Hence, V is a vector subspace of Γ(X,H).

Then, L2(ϕ, ω) = V
||.||

is a Hilbert space with the norm induced by inner product.
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Inner Product Structure on Γ(X,T
∗(0,1)
X ⊗H)-

Let α, β ∈ Γ(X,T
∗(0,1)
X ⊗H) be smooth sections of the H-valued (0,1) forms. For some

collection of trivializing nbhds {Uα}, we can write α = fαξα⊗dzα and β = gαξα⊗dzα
on each Uα. for some fα, gα ∈ C∞(Uα)

Define
(α ∧ β)e−ϕ

2i
=

−1

2i
fαgαe

−ϕαdzα ∧ dzα =
i

2
fαgαe

−ϕαdzα ∧ dzα on Uα

Proposition-
α ∧ βe−ϕ

2i
defined as above is a global (1,1) form[4].

Proof- Let us denote g
T ∗
X(1,0)

βα = gdzβα and g
T ∗
X(0,1)

βα = gdzβα. We perform a change of

coordinates from Uα to Uβ on their intersection Uα ∩ Uβ, we get that

ξα = gHβαξβ, dzα = gdzβαdzβ and dzα = gdzβαdzβ.

(α ∧ β)e−ϕ

2i
=
i

2
fαgαh(g

H
βαξβ, g

H
βαξβ)(g

dz
βαdzβ) ∧ (gdzβαdzβ)

= i
2
(gHβαg

dz
βαfα)(g

H
βαg

dzgα)h(ξβ, ξβ)dzβ ∧ dzβ

=
i

2
fβgβe

−ϕβdzβ ∧ dzβ

Hence,
(α ∧ β)e−ϕ

2i
is well-defined.

We define ⟨α, β⟩ = 1

2i

∫
X

(α ∧ β)e−ϕ for α, β ∈ Γ(X,H ⊗ T
∗(0,1)
X )

Proposition- The map ⟨, ⟩ : Γ(X,H ⊗ T
∗(0,1)
X ) × Γ(X,H ⊗ T

∗(0,1)
X ) → C is an

inner product.

Proof- i) Positivity- For α ∈ Γ(X,H ⊗ T
∗(0,1)
X ),
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⟨α, α⟩ =
∑
T∈T

i

2

∫
z(T )

|f |2e−ϕdz ∧ dz ≥ 0, where α|z(T ) = fξ ⊗ dz

ii)Conjugate Symmetry-

⟨α, β⟩ =
∑
T∈T

−i
2

∫
z(T )

fge−ϕdz ∧ dz =
∑
T∈T

i

2

∫
z(T )

fge−ϕdz ∧ dz = ⟨β, α⟩

iii)Bilinearity ⟨α1 + α2, β⟩ =
∑
T∈T

i

2

∫
z(T )

(f1 + f2)ge
−ϕdz ∧ dz

⟨α1 + α2, β⟩ =
∑
T∈T

i

2

∫
z(T )

f1ge
−ϕdz ∧ dz +

∑
T∈T

i

2

∫
z(T )

f2ge
−ϕdz ∧ dz

= ⟨α1, β⟩+ ⟨α2, β⟩

Define the space W = {α ∈ Γ(X,H ⊗ T
∗(0,1)
X )|⟨α, α⟩ < ∞}. By similar calcula-

tions as before we can see that (W, ⟨, ⟩) is an inner product space. We can equip W

with the metric topology induced by the inner product, we denote the completion

by W
||.||

= L2
(0,1)(ϕ) .
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Adjoint operator of ∂-

Define ∂
∗
: Γ0(X,H⊗T ∗(0,1)

X ) → Γ0(X,H) by β → ∂
∗
β where ∂

∗
β satisfies ⟨∂∗β, s⟩ =

⟨β, ∂s⟩ for all s ∈ Γ0(X,H) [4]

Note that β is compactly supported, denote K = supp(β), then K can be finitely

triangulated which implies ⟨β, ∂s⟩ =
∫
K

β ∧ω ∂s <∞

⟨β, ∂s⟩ = 1

2i

∫
K

β ∧ ∂s

=
n∑
j=1

i

2

∫
z(Ti)

f
∂h

∂z
e−ϕdz ∧ dz =

n∑
j=1

i

2

∫
z(Ti)

f
∂h

∂z
e−ϕdz ∧ dz

where β|z(Ti) = fξi ⊗ dzi and s|z(Ti) = hξi

Use integration by parts on each domain z(Ti),

=
n∑
j=1

− i

2

∫
z(Ti)

∂

∂z
(fe−ϕ)hdz ∧ dz =

n∑
j=1

i

2

∫
z(Ti)

−eψ+ϕ ∂
∂z

(fe−ϕ)he−(ψ+ϕ)dz ∧ dz

We define ∂
∗
β = −eψ+ϕ ∂

∂z
(fe−ϕ)ξi = −eψ

(
∂f

∂z
− f

∂ϕ

∂z

)
ξi on z(Ti).Then,

⟨∂∗β, s⟩ =
n∑
j=1

i

2

∫
z(Ti)

−eψ+ϕ ∂
∂z

(fe−ϕ)he−(ψ+ϕ)dz ∧ dz = ⟨β, ∂s⟩

Statement: We claim that ∂
∗
β defined as above is globally defined.

Proof- Let U and V be a trivializing neighbourhood for H and T
∗(0,1)
X such that

U ∩ V ̸= ϕ with ∂
∗
β|U = −eψ

(
∂f

∂z
− f

∂ϕ

∂z

)
ξ and ∂

∗
β|V = −eψ′

(
∂f ′

∂z′
− f ′∂ϕ

′

∂z′

)
ξ′.

On U ∩ V , we have relations, e−ψ = (gdzUV g
dz
UV )

−1e−ψ
′
, e−ϕ = (gHUV g

H
UV )e

−ϕ′

∂

∂z
= g

T
(1,0)
X
UV

∂

∂z′
and ξ = gHUV ξ

′ and f = gHV Ug
dz
V Uf

′

We derive that
∂f

∂z
= g

T
(1,0)
X
UV gdzV U

∂

∂z′
(gHV Uf

′) = g
T

(1,0)
X
UV gdzV U

(
∂gHV U
∂z′

f ′ + gHV U
∂f ′

∂z′

)
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On differentiating e−ψ = (gdzUV g
dz
UV )

−1e−ψ
′
we get

−e−ϕ∂ϕ
∂z

= g
T

(1,0)
X
UV

∂

∂z′
((gHUV g

H
UV )e

−ϕ′) = g
T

(1,0)
X
UV gHUV

(
∂gHUV
∂z′

e−ϕ
′ − gHUV e

−ϕ′ ∂ϕ
′

∂z′

)

gHUV
∂ϕ

∂z
= g

T
(1,0)
X
UV

(
gHUV

∂ϕ′

∂z′
− ∂gHUV

∂z′

)
This gives us,

∂ϕ

∂z
= (gHUV )

−1g
T

(1,0)
X
UV

(
gHUV

∂ϕ′

∂z′
− ∂gHUV

∂z′

)
= g

T
(1,0)
X
UV

(
∂ϕ′

∂z′
− 1

gHUV

∂gHUV
∂z′

)

Putting it in

(
∂f

∂z
− f

∂ϕ

∂z

)
, we get

= g
T

(1,0)
X
UV gdzV U

(
∂gHV U
∂z′

f ′ + gHV U
∂f ′

∂z′
− (gHV Uf

′)

(
∂ϕ′

∂z′
− 1

gHUV

∂gHUV
∂z′

))

= g
T

(1,0)
X
V U gdzV U

(
∂gHV U
∂z′

f ′ + gHV U
∂f ′

∂z′
− gHV Uf

′∂ϕ
′

∂z′
+

1

(gHUV )
2

∂gHUV
∂z′

f ′
)

= g
T

(1,0)
X
UV gdzV Ug

H
V U

((
∂f ′

∂z′
− f ′∂ϕ

′

∂z′

)
+ f ′

(
gHUV

∂gHV U
∂z′

+ gHV U
∂gHUV
∂z′

))
=g

T
(1,0)
X
UV gdzV Ug

H
V U

((
∂f ′

∂z′
− f ′∂ϕ

′

∂z′

)
+ f ′ ∂

∂z′
(gHUV g

H
V U)

)
Since gHUV g

H
V U = 1, we get that(

∂f

∂z
− f

∂ϕ

∂z

)
= g

T
(1,0)
X
UV gdzV Ug

H
V U

(
∂f ′

∂z′
− f ′∂ϕ

′

∂z′

)
So that ∂

∗
β|U = ((gdzUV g

dz
UV )e

ψ′
)g
T

(1,0)
X
UV gdzV Ug

H
V U

(
∂f ′

∂z′
− f ′ ∂ϕ′

∂z′

)
(gHUV ξ

′)

= eψ
′
(
∂f ′

∂z′
− f ′∂ϕ

′

∂z′

)
ξ′

Hence, ∂
∗
β is globally well-defined.
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Del-bar Operator on L2(ϕ, ω)-

Define ∂ : L2(ϕ, ω) → L2
(0,1)(ϕ) by s→ ∂s,

where ∂s satisfies ⟨∂s, β⟩ = ⟨s, ∂∗β⟩ for all β ∈ Γ0(X,H ⊗ T
∗(0,1)
X ) [4]

Define Dom(∂) = {s ∈ L2(ϕ, ω)|∂s ∈ L2
(0,1)(ϕ)}. Since Γ0(X,H) ⊂ Dom(∂), we

see that Dom(∂) is a dense subspace of L2(ϕ, ω).

L2- estimates on ∂
∗
-

We have found that ∂
∗
: Γ0(X,T

∗(0,1)
X ⊗H) → Γ0(X,H) is given by

∂
∗
β = −eψα+ηα

∂

∂zα
(e−ϕαhα)ξα on each Uα where β = hαξα⊗ dzα and Uα is a trivial-

izing cover

Theorem(Bochner-Kodaira-Identity)-[4]

Let β ∈ Γ0(X,H ⊗ T
∗(0,1)
X ) be a compactly supported smoooth H-valued (0,1)-

form.Let {Uα} be a open trivializing cover of H ⊗ T
∗(0,1)
X and Λ

(1,1)
X . Then,

||∂∗β||2 = 1

2i

∫
X

|∇β|2ωe−ϕω +
i

2

∫
X

|β|2ωe−ϕ∂∂(ϕ+ ψ)

where if U is a trivializing neighbourhood of H ⊗ T
∗(0,1)
X and Λ

(1,1)
X

β|U = fdz ⊗ ξ, ω|U = e−ψdz ∧ dz

|∇β|2ωe−ϕ = e2ψ−ϕ|fz + ψzf |2 and |β|2ωe−ϕ|Uα = eψ−ϕ|f |2

are globally defined.
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Proof-Let β ∈ Γ0(X,H ⊗ T
∗(0,1)
X ), then

⟨∂∗β, ∂∗β⟩ = ⟨∂(∂∗β), β⟩ = 1

2i

∫
X

∂(∂
∗
β) ∧ βe−ϕ

Let U be a trivializing neighbourhood and β = fdz ⊗ ξ on U .

⟨∂(∂∗β), β⟩|U = − i

2

∫
U

∂

∂z

(
eψ

(
∂f

∂z
− f

∂ϕ

∂z

))
fe−ϕdz ∧ dz

=
i

2

∫
U

(−eψψz(e−ϕf)zf − eψ−ϕ(fzz − ϕzfz)f + eψ−ϕϕzz|f |2)dz ∧ dz

=
i

2

∫
U

(−eψψz(e−ϕf)zf − eψ(fze
−ϕ)zf + eψ−ϕϕzz|f |2)dz ∧ dz

Use integration by parts on U for 1st and 2nd term,

=
i

2

∫
U

(eψψzf)ze
−ϕf + (eψf)zfze

−ϕ + eψ−ϕϕzz|f |2)dz ∧ dz

=
i

2

∫
U

(eψψzψzf + eψψzzf + eψψz(f)z)e
−ϕfdz ∧ dz

+
i

2

∫
U

(eψψzf + eψ(f)z)fze
−ϕdz ∧ dz + i

2

∫
U

eψ−ϕϕzz|f |2)dz ∧ dz

=
i

2

∫
U

eψ−ϕ(ψzψzf + ψz(f)zf + ψzffz + (f)zfz)dz ∧ dz

+ i
2

∫
U

eψ−ϕ(ϕzz + ψzz)|f |2dz ∧ dz

=
i

2

∫
U

e2ψ−ϕ|ψzf + fz|2e−ψdz ∧ dz +
i

2

∫
U

eψ−ϕ(ϕzz + ψzz)|f |2dz ∧ dz
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ii)
∂f

∂z
= g

T
(1,0)
X
V U

∂

∂z′
(gdzUV g

H
UV f

′) = g
T

(1,0)
X
V U gHUV

(
∂gdzUV
∂z′

f ′ + gdzUV
∂f ′

∂z′

)

Differentiating e−ψ = (gdzUV g
dz
UV )e

−ψ′
on both sides

−e−ψ ∂ψ
∂z

= g
T

(1,0)
X
UV

∂

∂z′
((gdzUV g

dz
UV e

−ψ′
) = g

TX(1,0)
UV gdzUV

(
∂gdzUV
∂z′

e−ψ
′ − e−ψ

′ ∂ψ′

∂z′
gdzUV

)

(gdzUV g
dz
UV )e

ψ′ ∂ψ

∂z
= g

TX(1,0)
UV gdzUV

(
−∂g

dz
UV

∂z′
eψ

′
+ eψ

′ ∂ψ′

∂z′
gdzUV

)
∂ψ

∂z
= g

TX(1,0)
UV

(
−1

gdzUV

∂gdzUV
∂z′

+
∂ψ′

∂z′

)
∂f

∂z
+ f

∂ψ

∂z
= g

T
(1,0)
X
V U gHUV

((
∂gdzUV
∂z′

f ′ + gdzUV
∂f ′

∂z′

)
+ gdzUV f

′
(

−1

gdzUV

∂gdzUV
∂z′

+
∂ψ′

∂z′

))

= g
T

(1,0)
X
V U gHUV g

dz
UV

(
∂f ′

∂z′
+ f ′∂ψ

′

∂z′

)
So that e2ψ−ϕ|ψzf + fz|2 = (gdzUV g

dz
UV )

−2|gHV U |2e2ψ
′−ϕ′|gTX(1,0)

V U gHUV g
dz
UV |2|ψ′

zf
′ + f ′

z′
|

Since g
TX(1,0)
V U = (gdzUV )

−1 we would get

e2ψ−ϕ|ψzf + fz|2 = e2ψ
′−ϕ′|ψ′

zf
′ + f ′

z′
|

Hence, this expression is globally defined.

iii) eψ−ϕ|f |2 = (gdzUV g
dz
UV e

−ψ′
)−1(gHV Ug

H
V Ue

−ϕ′)(|gHUV gdzUV |2f ′) = eψ
′−ϕ′ |f ′|2

iv)
∂2

∂z∂z
(.)dz ∧ dz = |gT

(0,1)
X
V U |2|gT

∗(0,1)
X
V U |2 ∂2

∂z′∂z′
(.)dz′ ∧ dz′

Now, e−(ψ+ϕ) = |gHUV |2|gdzUV |e−(ψ′+ϕ′) Since, gHUV and gdzUV are holomorphic their

modulus is a harmonic function on U ∩ V putting it above we get,

∂2

∂z∂z
(e−(ψ+ϕ))dz ∧ dz = |gHUV |2|gdzUV |2

∂2

∂z′∂z′
(e−(ψ′+ϕ′))dz′ ∧ dz′
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−e−(ψ+ϕ) ∂2

∂z∂z
(ψ + ϕ)dz ∧ dz = −|gHUV |2|gdzUV |2e−(ψ′+ϕ′) ∂2

∂z′∂z′
(ψ′ + ϕ′)dz′ ∧ dz′

Hence, ∂∂(ϕ+ ψ) is globally defined (1,1) form.

Hormander’s Theorem-[4]

Let H → X be a holomorphic line bundle over a Riemann surface X. Let H be

equipped with a hermitian metric h and ω ∈ Γ(X,Λ
(1,1)
X ) be a positive (1, 1) form on

X.If ∂∂(ϕ+ ψ) ≥ cω, for some c > 0, then

i) for every α ∈ L2
(0,1)(ϕ) ∃ u ∈ L2(ϕ, ω) s.t. ∂u = α

ii)

∫
X

|u|2e−ϕω ≤ 1

c

 1

2i

∫
X

α ∧ αe−ϕ


Proof-Let α ∈ L2
(0,1)(ϕ) be a H-valued (0, 1) form.

Consider the adjoint operator ∂
∗
: Γ0(X,H ⊗ T

∗(0,1)
X ) → Γ0(X,H), then since ∂

∗

is a linear operator ∂
∗
(Γ0(X,H ⊗ T

∗(0,1)
X )) is a linear subspace of L2(ϕ, ω).

We define λ : ∂
∗
(Γ0(X,H ⊗ T

∗(0,1)
X )) → C by λ(∂

∗
β) = ⟨α, β⟩.

Note that for β, γ ∈ Γ0(X,H ⊗ T
∗(0,1)
X ) and c ∈ C

λ(∂
∗
(β + cγ)) = ⟨α, β + cγ⟩ = ⟨α, β⟩+ c⟨α, γ⟩ = λ(∂

∗
β) + cλ(∂

∗
γ)

By Cauchy-Schwarz theorem, |⟨α, β⟩|2 ≤ ⟨α, α⟩⟨β, β⟩

By previous identity,

||∂∗β||2 ≥ i

2

∫
X

|β|2ωe−ϕ∂∂(ϕ+ ψ) ≥ c

 i

2

∫
X

|β|2ωe−ϕω

 = c.||β||2

This implies that |λ(∂∗β)|2 ≤ 1

c
||α||2||∂∗β||2i.e. λ is a continuous anti-linear

functional.

47



By Hahn-Banach theorem for continuous anti-linear functional, ∃ λ̃ : L2(ϕ, ω) →

C such that i) λ̃|
Γ0(X,H⊗T ∗(0,1)

X )
= λ and ii) ||λ|| = ||λ̃||

Since L2(ϕ, ω) is a Hilbert space, By Riesz-Representation theorem ∃ u ∈ L2(ϕ, ω)

such that λ̃(s) = ⟨u, s⟩ for all s ∈ L2(ϕ, ω) and ||λ̃|| = ||u||.

In particular for all β ∈ Γ0(X,H ⊗ T
∗(0,1)
X ), λ̃(∂

∗
β) = ⟨u, ∂∗β⟩

By definition ⟨α, β⟩ = λ(∂
∗
β) = λ̃(∂

∗
β) = ⟨u, ∂∗β⟩

This implies that ∂u = α in the sense of currents as defined.

Furthermore, we have that ||u|| = ||λ|| = ||λ̃|| ≤ 1√
c
||α||.

4.4 Conclusion

The following report gives an idea about how rich the theory of Riemann surfaces

can be.They serve as a fundamental building block for learning about the classical

theory of manifolds (smooth or topological) which further evolves into methods of

modern geometry through line bundles or more stringently holomorphic line bundles.

Modern techniques of pde from functional analysis to operator theroy can be studied

on the space of sections of operators defined on manifolds out of purely geometric

motivations. The solution of ∂ and ∂∂ is essential in studying the phenomenon of

analytic continuation which are well-known for Riemann surfaces[4]. Further appli-

cations of Hormander’s theorem lies in the embedding problem of Riemann surfaces

which allows us to treat them as domains in some Cn ,n > 1 [4].
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