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Abstract

The principal aim of this thesis is to construct K(G, 1) spaces for any given
groupGwith discrete topology. The general construction of universalG-bundles
and classifying spaces by Milnor is used to acheive this. Uniqueness of K(G, 1)

spaces is established for a particular class of groups G. Milnor’s construction
relies on the join of spaces. A major theme of this thesis is to compare various
topological joins. We extend the notion of joins for an arbitrary family of spaces.
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Preface

A path connected space whose only non-trivial homotopy group is its nth ho-
motopy group πn is called a K(G, n) space, where G is a group isomorphic to
πn. These were introduced and studied in [Eilenberg and MacLane, 1945] and
[Eilenberg and MacLane, 1950]. This dissertation studies a construction of a
K(G, 1) space for a group G with discrete topology. For this, a more general con-
struction (see [Milnor, 1956b]) of universal G-bundles and classifying spaces
of groups. These classifying spaces are built using the concept of the join of
spaces.

A particular kind of topology is defined on the join of spaces that enables Mil-
nor’s construction of classifying spaces. However, one can define other topolo-
gies too on the join of spaces. A major theme of this thesis is to compare the
various topologies on the join of arbitrary family of spaces. We examine if a con-
struction of K(G, 1) spaces is possible using Milnor’s construction with these
other topologies.

In chapter 1, graphs are considered as topological spaces; their fundamental
groups and covering spaces are discussed. It is proved that the fundamental
group of a graph is a free group. Using covering space theory, various algebraic
properties of a free group and its (normal) subgroups are realized geometrically;
for instance, every subgroup of a free group is free. For a given free group G

with discrete topology, one obtains a graph to be a K(G, 1) space.
Chapter 2 gives an introduction toCW -complexes. In particular,we examine

the CW -complex structure on the infinite sphere and compare it with other
topologies on the infinite sphere. We look at the group action of the unit circle
on the infinite sphere.

Chapter 3 discusses joins of spaces. The join of two spaces is defined in
several ways: as a space of line segments, as a quotient space, and as a space of
formal convex combinations. These topological joins are compared. We extend
the notion of the join to arbitrary family of spaces. We examine a case when
these joins are equivalent; this case will be useful in chapter 5.
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Chapter 4 is a superficial introduction to the theory of fiber bundles and
principal G-bundles. Only the concepts required for chapter 5 are described.

In Chapter 5, Milnor’s construction of universal G-bundles and classifying
spaces of a topological group G are discussed. By taking G to be a group with
disrcete topology, the base space of the universal G-bundle is obtained to be
a K(G, 1) space. Uniqueness of a K(G, 1) space, up to homotopy type, is guar-
anteed if the K(G, 1) space is a CW -complex. Hence, a CW -complex structure
is described for the K(G, 1) space obtained from Milnor’s construction. Finally,
examples of K(G, 1) spaces are considered.

There are simplicial methods ([Hatcher, 2002] p.89) for construction of
K(G, 1) spaces. Milnor’s construction, however, is a more general construction.
It shows the existence of a classifying space BG of a given topological group G.
A classifying space BG of a group G is the base space of a universal G-bundle.
The assignment G 7→ BG is a functor from the category of topological groups
to the category of topological spaces. The classifying space BG is primarily
important because there is a bijection between the homotopy classes of maps
X → BG and isomorphism classes of principal G-bundles over a paracompact
Hausdorff space X.

In spite of best efforts of the author, there might be some errors of both
typographical and mathematical in nature. The author is solely responsible
for such errors.
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Notations

A ⊂ B : inclusion of sets, not necessarily proper
A\B : the set of elements in A but not in B

A ∪B : union of sets A and B
A ∩B : intersection of sets A and B
N : the set of natural numbers
N0 = N ∪ {0}
Z : the set of integers
Q : the set of rational numbers
R : the set of real numbers
C : the set of complex numbers
Zn : the set of integers modulo n
Rn : the n-dimensional euclidean space, where n is a positive integer
Cn : the n-dimensional complex space, where n is a positive integer
Sn : the unit sphere in Rn+1

Dn : the unit disk or ball in Rn

I : the closed unit interval [0, 1]

{∗} : the one-point space∐
: disjoint union of sets or spaces

×,
∏

: product of sets or spaces
Ā : the closure of the (sub)space A
A◦ : the interior of the (sub)space A
prA : the projection map onto A
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Chapter 1

Graphs and Free Groups

Graphs have been traditionally studied in combinatorics. In this chapter, graphs
will be considered as topological spaces, thus enabling one to talk about their
fundamental groups. The exposition here largely follows [Hatcher, 2002](p. 83-
87).

1.1 Graphs and trees
This section shows the existence of a maximal tree in a connected graph. The
computation of the fundamental group of a graph relies on the existence of a
maximal tree in the graph.

Definition 1.1. Let X0 be a discrete set and {Iα}α∈Λ be an indexed collection of
unit closed intervals. Consider the disjoint union X0

∐
α Iα with disjoint union

topology, and family of maps {φα : ∂Iα → X0}α. The quotient space X obtained
from X0

∐
α Iα by the identifications x ∼ φα(x) for x ∈ ∂Iα and α ∈ Λ is called a

graph .

Example 1.2. Consider a singleton {x0} and let {Iα}α∈Λ be an indexed collection
of unit closed intervals. The graph X obtained by the maps {φα : ∂Iα → {x0}}α
is called a wedge sum of circles indexed over Λ with base point x0 ∈ X. It is
denoted by ∨α∈ΛS

1
α. When Λ is a finite set of cardinality n, we simply call X as

a wedge of n circles. Refer figure 1.1.

Denote the quotient map X0
∐

α Iα → X sending each point to its equiva-
lence class under the identifications of definition 1.1 by q.

Definition 1.3. The points in X0 are called the vertices of the graph X .
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x0

Figure 1.1: A wedge of four circles.

Definition 1.4. For α ∈ Λ, the image of Iα\∂Iα under the quotient map q is
called an edge (denoted byeα) of the graph X.

Without being too pedantic, we might refer to the images of points in X0

under q, too, as vertices. Two vertices are said to be adjacent if there is an edge
eα such that end points of Iα are identified with these two vertices respectively.
An edge eα is said to be incident on a vertex if one of the endpoints of Iα is
identified with this vertex.

Lemma 1.5. A graph is a Hausdorff topological space.

Proof. Let p1 and p2 be any two points of a graph X. Let the collection of edges
incident on p1 be {ep1α }α and the collection of edges incident on p2 be {ep2β }β.
Also, let the collection of edges joining p1 and p2 be {ep1p2γ }γ . These collections
of edges are not necessarily non-empty. We have the following cases.

(i) The points p1 and p2 belong to distinct edges eα and eβ respectively.
Then the edges eα and eβ are open sets in X that separate p1 and p2 re-
spectively.

(ii) Both p1 and p2 are in the same edge eα.
Separate pre-images of p1 and p2 in Iα\∂Iα using two open sets in I respec-
tively. Then the images of these two open sets under q in eα are open sets
that separate p1 and p2 respectively.

(iii) The points p1 and p2 are not adjacent vertices.
Then the open sets {ep1α }α ∪ {p1} and {ep2β }β ∪ {p2} separate p1 and p2 re-
spectively.

(iv) The points p1 and p2 are adjacent vertices.
For each γ, let Uγ and Vγ be the images of the open sets separating p1 and
p2 in Iγ respectively. Then, ({ep1α }α\{ep1p2γ }γ)∪{Uγ}γ and ({ep2β }β\{ep1p2γ }γ)∪
{Vγ}γ are open sets in X separating p1 and p2 respectively.
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(v) The point p1 is in eα and p2 is a vertex such that eα is not incident on p2.
Then eα and {ep2β }β∪{p2} are open sets that separate p1 and p2 respectively.

(vi) The point p1 is in eα and p2 is a vertex such that eα is incident on p2.
Let the images of open sets separating q−1(p1) and q−1(p2) in Iα be U1 and
U2 respectively. Then U1 and ({ep2β }β\{eα}) ∪ {U2} are open sets in X that
separate p1 and p2.

�

Each edge is homeomorphic to the open unit interval. We also have the
following.

Lemma 1.6. The closure of an edge is homeomorphic to the unit closed interval
or the unit circle.

Proof. Consider the continuous map Φα associated with an edge eα defined
as the composition Iα ↪→ X0

∐
α Iα

q−→ X. We see that Φα|∂Iα = φα . Also,
Φα|int Iα : int Iα → eα is a homeomorphism. Hence eα = Φα(int Iα) ⊂ Φα(Iα) ⊂
Φα(int Iα) = ēα where the second inclusion follows from the continuity of Φα.
But Φα(Iα) is compact in the Hausdorff space X whence Φα(Iα) = ēα. Therefore
eα is homeomorphic to S1 if φα(∂Iα) is a singleton, otherwise it is homeomorphic
to I. �

Definition 1.7. Let X be a graph. Define a topology on X by declaring a subset
of X to be open (or closed) if and only if it intersects the closure ēα of every edge
eα in an open (or closed) set of ēα. This topology is called the weak topology of
graph X with respect to the subspaces ēα.

Lemma 1.8. Quotient topology of a graph is equivalent to its weak topology
with respect to the closures of edges.

Proof. Let X be a graph. If A ⊂ X is in the quotient topology, then A is in the
weak topology. Now let A ⊂ X be in the weak topology. We have to show that
q−1(A)∩Iα is open for each α. Define the continuous map Φα by the composition
Iα ↪→ X0

∐
α Iα → X. We have the following commutative diagram.

Iα X0
∐

α Iα

ēα

ια

Φα
q
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Thus Φ−1
α (A ∩ ēα) is open in Iα, which implies that ι−1

α ◦ q−1(A ∩ Iα) is open in
Iα. This gives our result. �

The proof of the next lemma is clear.

Lemma 1.9. Consider a graph and the collection of open sets in edges and path
connected neighborhoods of vertices. Then this collection forms a basis for the
weak topology of the graph with respect to the closures of edges. �

Corollary 1.10. A graph is connected if and only if it is path connected.

Proof. Each element of the basis defined in the above lemma is path connected.
�

Definition 1.11. A subspace Y of a graph is called a subgraph if it consists
of vertices and edges such that the closure of an edge e ⊂ Y is in Y .

A subgraph is a closed subspace of a graph. This means that a subgraph
too has weak topology with respect to the closures of edges contained in the
subgraph. Hence a subgraph is a graph.

Definition 1.12. A path connected (sub)graph that is contractible is called a
tree.

Definition 1.13. A tree in a graph is called a maximal tree if the tree contains
all the vertices of the graph.

Theorem 1.14. Every connected graph contains a maximal tree.

Proof. Let X be a connected graph that has the weak topology with respect
to the closures of edges eα. We shall prove that if a subspace X0 of X is given,
then X0 can be embedded in a subspace Y of X that contains all the vertices
of X and deformation retracts to X0. The theorem is then proved by setting X0

to be a vertex of X.
Step 1 Consider X0. Construct X1 ⊂ X by adding all the closures ēα that

have at least one endpoint in X0. Inductively construct Xi+1 from Xi , for each
non-negative integer i, by adding all ēα with at least one endpoint in Xi. We see
that X0 ⊂ . . . ⊂ Xi ⊂ Xi+1 ⊂ . . . is a sequence of subgraphs. Let x be a point in
∪i∈N0Xi. If x ∈ Xi, then by construction there exists an open neighborhood of x
that is contained in Xi+1. Therefore ∪i∈N0Xi is open in X. Also, since ∪i∈N0Xi is
a union of closures of edges, it is closed in X. Hence ∪i∈N0Xi = X.
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Step 2 Now set Y0 = X0. We construct Yi+1 inductively from Yi. For each
vertex v ofXi+1\Xi , consider an edge connecting v to Yi. Obtain Yi+1 by adjoining
all such edges to Yi. The space Yi+1 deformation retracts to Yi because the
edges adjoined to Yi deformation retract to their endpoints in Yi. Denote this
deformation retraction I × Yi+1 → Yi+1 as hi for i ∈ N0.

Step 3 Setting Y = ∪i∈N0Yi , define a homotopy h : I × Y → Y by

h(t, y) =

hi(t, y), if y ∈ Yi+1 and t ∈ [2−i−1, 2−i]

y, otherwise.

LetA ⊂ Y be open. SoA∩ēα is open for eachα. If ēα ⊂ Yi+1 then h−1(A∩ēα) =

h−1
i (A ∩ ēα). Since hi is continuous, it follows that h is continuous. �

1.2 Fundamental group and coverings of graphs

In this section, it will be shown that the fundamental group of a graph is a free
group and that every covering space of a graph is a graph.

Definition 1.15. Let X be a connected graph with a maximal tree T . Let eα
be an edge in X. With base point x0 ∈ T , construct a loop γα at x0 by traveling
along a path in T joining x0 to an endpoint of eα followed by the edge eα and
then continuing along a path in T joining the other endpoint to x0. The path γα

is said to be a loop determined by the edge eα at the base point x0. The path
homotopy class [γα] is said to be the loop class determined by the edge eα at
the base point x0.

Strictly speaking, the edge eα must be first oriented to determine the corre-
sponding loop class. This, however, will not make a difference because a group
containing these loop classes will be considered.

Since T is contractible, the loop class determined by an edge in T is the
trivial class of loops based at x0. Each edge eα in X\T determines a loop class
[γα] that is independent of the choice of paths joining x0 to the endpoints of eα.

The following definition and lemmas are quoted from [Hatcher, 2002](p.
14-16).

Definition 1.16. Let X and Y be topological spaces and let T ⊂ X. Further
let a continuous map f0 : X → Y and a homotopy f : T × I → Y be given
such that f |T×{0} = f0 |T . If f : T × I → Y can be extended to a homotopy
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f : X × I → T such that f |X×{0} = f0, then the pair (X,T ) is said to satisfy
homotopy extension property.

Lemma 1.17. LetX be a connected graph with a maximal tree T . Then the pair
(X,T ) satisfies the homotopy extension property.

Lemma 1.18. If a pair (X,T ) satisfies the homotopy extension property and T

is contractible, then the quotient map X →X�T is a homotopy equivalence.

Now the fundamental group of a graph can be computed.

Theorem 1.19. Let X be a connected graph with a maximal tree T . Then the
fundamental group π1(X, x0) is a free group where the base point x0 ∈ T . A basis
is given by the loop classes determined by the edges in X\T at the base point x0.

Proof. From lemmas 1.17 and 1.18, the quotient map q′ : X →X�T obtained by
collapsing T is a homotopy equivalence. Since composition of quotient maps
is a quotient map, the quotient space X�T is also a graph. Because T contains
all the vertices of X, the graph X�T contains only one vertex. The edges in X�T

correspond to the edges inX\T . Therefore X�T is a wedge sum of circles indexed
over the loop classes [γα] determined by the edges eα in X\T with base point
q′(T ). Applying van Kampen’s theorem to determine π1(X�T , q

′(T )) gives a free
group with a basis as required. �

Corollary 1.20. A maximal tree cannot be contained in any other tree.

Proof. Let T be a maximal tree in a graph. Suppose T ′ is another maximal
tree that contains T . An edge in T ′\T corresponds to a non-trivial element of
fundamental group of T ′. This contradicts the fact that T ′ is contractible. �

This means that the fundamental group of a connected graph as computed
in 1.19 is independent of the maximal tree chosen.

Corollary 1.21. A connected graph is a tree if and only if it is simply connected.

Proof. Let X be a simply connected graph with a maximal tree T . If X strictly
contains T , then X is not simply connected. �

Corollary 1.22. A group is free if and only if it is the fundamental group of a
graph.

Proof. If a free group is given on generators {aα}α∈Λ , then let X be a wedge
sum of circles indexed over Λ with base point x0. ThusX is a graph and π1(X, x0)

is isomorphic to the given free group. �
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We quote the following theorem from [Hatcher, 2002] (p. 85).

Theorem 1.23. Every covering space of a graph is a graph whose vertices and
edges are the lifts of the vertices and edges in the base graph.

Proof. Let X be a graph and p : X̃ → X be a covering map. Denote X0 ⊂ X

to be the set of vertices of graph X. Take p−1(X0) to be the set of vertices of
X̃. Consider the continuous map Φα associated with the edge eα defined by the
composition Iα ↪−→ X0

∐
α∈Λ Iα

q−→ X. Each Φα is a path in X. By theorem A.28,
find a unique lift Φ̃α of Φα passing through each point in p−1(x) for x ∈ eα.

X̃

Iα X

p
Φ̃α

Φα

The image of a lift Φ̃α is the closure of a lift of eα in X̃. We take the interior
of this image to be an edge in X̃. The two points of X̃ that this edge joins are
lifts of endpoints of ēα. The graph structure on X̃ is described by the vertices
p−1(X0) and edges Int (Im (Φ̃α)). Finally it needs to be shown that the the weak
topology with respect to these edges is equivalent to the given topology on X̃.
This is evident from the fact that p is a local homeomorphism. �

1.3 Applications to Free Groups

Results on the fundamental group and covering spaces of a graph lead to geo-
metric realization of a few algebraic properties of a free group.

Theorem 1.24 (Neilsen-Schreier theorem). Every subgroup of a free group is
free.

Proof. Let FΛ be a free group with generators {aα}α∈Λ. LetX be a wedge sum of
circles indexed over Λ with base point x0. Then X is a graph. By theorem 1.19,
the fundamental group π1(X, x0) is isomorphic to FΛ. By theorem A.35, for each
subgroup G of F , we can find a connected covering map p : (X̃G, x̃0) → (X, x0)

such that the image p∗(π1(X̃G, x̃0)) of the induced map p∗ : π1(X̃G, x̃0)→ π1(X, x0)

is isomorphic to G. Theorem A.29 ensures that the map p∗ is injective and
hence π1(X̃G, x̃0) is isomorphic to G. But theorem 1.23 says that X̃G is a graph.
It follows that G is a free group from corollary 1.22. �

11



x̃0

b b b b

a a a

X̃ =

a b
x0

X =

p

Figure 1.2: The free group on countably many generators is a subgroup of the
free group on two generators.
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Figure 1.4: All connected non-normal triple coverings of S1 ∨ S1.
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Figure 1.5: All connected normal triple covers of S1 ∨ S1.

Theorem 1.25. Every free group on countably many generators is a subgroup
of free group on two generators.

Proof. Denote the free group on k generators by Fk for k ∈ N. Denote the free
group on countably many generators {gn}n∈Z by FZ. Let the wedge of two circles
with base point x0 be denoted as X. Let {Ij}j∈Z and {Ik}k∈Z be two countable
collections of unit intervals. Consider the disjoint union Z

∐
j Ij
∐

k Ik and the
attaching maps φj : ∂Ij → Z and φk : ∂Ik → Z defined by the rules φj(0) =
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j , φj(1) = (j + 1) and φk(0) = k = φk(1) for j, k ∈ N. The resulting quotient
space is a graph X̃ as shown in figure 1.2. Then p : X̃ → X is a canonical
covering map. Also, from theorem 1.19 it follows that π1(X̃, 0) is FZ. Letting the
generating classes of loops in π1(X, x0) to be a and b as shown in the figure 1.2,
we therefore have an embedding ι : FZ ↪−→ F2 defined by gn 7→ bnab−n for n ∈ Z.
Since Fk is a subgroup of FZ canonically, it also follows that Fk is a subgroup
of F2. �

We can enumerate the number of subgroups of the free group on two gener-
ators that have a particular finite index, as illustrated by the following propo-
sition.

Proposition 1.26. Let F2 be the free group on two generators. Then F2 contains
three subgroups of index 2 and thirteen subgroups of index 3. Of the subgroups
of index 3, four are normal subgroups.

Proof. Let X be the wedge of two circles with base point x0 as indicated in
figure 1.2. We prove the theorem by examining the connected double coverings
and connected triple coverings of X. The three connected double coverings of
X correspond to the three subgroups of index two in F2. The seven connected
triple coverings of X correspond to seven conjugacy classes of subgroups of
index three in F2. Four of these triple coverings are normal coverings. Taking
into consideration the changes in base points, we obtain nine subgroups corre-
sponding to the non-normal connected triple coverings of X. Refer figures 1.3,
1.4 and 1.3. �

Definition 1.27. Let X be a graph consisting of finitely many vertices and
finitely many edges. The number of vertices minus the number of edges of the
graph X is called the Euler characteristic of the graph. It is denoted as χ(X).

Denote the rank of a free group F by rank(F ). Let T be a maximal tree
of a connected graph X with finitely many vertices and finitely many edges.
Fix x0 ∈ T as the base point. It is easy to see that χ(T ) = 1. Also χ(X) =

χ(T )− rank(π1(X, x0)) whence χ(X) = 1− rank(π1(X, x0)).

Theorem 1.28. Let G be a subgroup of the free group Fn on n generators for
n ∈ N. If G has a finite index k in Fn then G is a free group on 1 + k(n − 1)

generators.
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Proof. It was proved thatG is a free group. LetX be the wedge of n circles with
base point x0. Then we have a connected covering map p : (X̃, x̃0)→ (X, x0) such
that the fundamental group π1(X̃, x̃0) is isomorphic to G. Since G has index
k in Fn, by theorem A.30, the degree of the covering map p is k. This means
that there are k vertices and kn edges in X̃. Hence χ(X̃) = 1− rank(π1(X̃, x̃0))

which gives our result. �

Corollary 1.29. The free group on three generators does not contain a free
subgroup of finite index on four generators. �

1.4 Further Notes and references
The result that every subgroup of a free group is free is attributed to [Nielsen,
1921]. This paper poses the problem combinatorially in terms of non-commuting
factors a1, . . . , am, each having an inverse a−1

i and satisfying aia−1
i = a−1

i ai = 1.
Nielsen’s proof, in fact, provides a basis for the subgroup unlike the proof given
in this thesis. One can refer to [Stillwell, 1993] (p. 103-104) for Nielsen’s proof,
where it is outlined as a series of exercises. [Schreier, 1927] proves the same
result using another method that also finds the generators of the subgroup of
a free group. This method algebraically encodes the process in theorem 1.19 of
finding generators of the fundamental group of a graph. Refer [Stillwell, 1993]
(p. 105) for further details.

Let n and r be positive integers and let N(n, r) denote the number of sub-
groups of index n of a free group on r generators. It was shown by [Hall, 1949]
that N(n, r) = n(n!)r−1 −

∑n−1
i=1 [(n − i)!]r−1N(i, r). There have been works to

prove the same result using graphs and coverings. One can refer to [Nieveen
and Smith, 2006] for an accessible proof. The latter paper also proves many
other results concerning enumeration of normal subgroups of finite index in a
free group, and describes related algorithms.
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Chapter 2

CW -complexes

We fix some terminology and notation before proceeding. The n-dimensional
closed unit disk ofRn is denoted byDn. The interior intDn of the n-dimensional
unit closed disk is called an n-cell and is also denoted by enα. The 0-dimensional
unit closed disk D0 and the 0-cell e0 are declared to be the one-point space. The
n-dimensional unit sphere Sn is the boundary ∂Dn+1 of the (n+ 1)-dimensional
closed unit disk. The (−1)-dimensional sphere is hence the empty set.

We refer to [Hatcher, 2002] for the definition of a CW -complex.

Definition 2.1. A topological space X that is constructed in the following way
is called a CW-complex.

(i) Begin with a discrete set X0. This set is called the 0-skeleton of the space
X. Each point in X0 is called a 0-cell of X.

(ii) Form the n-skeleton Xn either by taking it to be Xn−1 or by attaching n-
cells enα , for α ∈ Λ , to Xn−1 via a family of maps {φnα : ∂Dn

α → Xn−1}α. In
the latter case,

Xn =
Xn−1

∐
αD

n
α

∼

where x ∼ φnα(x) for x ∈ ∂Dn
α and α ∈ Λ.

(iii) Now let X = ∪n∈N0X
n. Declare A ⊂ X to be open (or closed) if and only if

A∩Xn is open (or closed) in Xn for each n. This topology is called the weak
topology of X with respect to the subspaces Xn.

Declare X−1 to be the empty set. Thus the empty set is a CW -complex.
This means for x0 ∈ X0 , the attaching maps φ0

x0 are the identity maps of the
empty set. A CW -complex that has countably many cells is called a countable
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CW -complex. A CW -complex X is called a finite-dimensional CW -complex
if X = Xn for some n ∈ N0. The smallest such n is called the dimension of X.
The dimension of the empty set is declared to be (−1). For an n-dimensional
CW -complex X, where n is a non-negative integer, we write {X0, . . . , Xn} as
the set of skeleta.

Lemma 2.2. The quotient and weak topologies agree on a finite-dimensional
CW -complex.

Proof. Let X = Xn where n is the dimension of X. Let A ⊂ X be in quotient
topology of X. Then q−1(A) is open in Xn−1

∐
αD

n
α which gives that q−1(A) is

open in Xn−1 whence q−1(A) ∩Xn−1 = A ∩Xn−1 is open. Continue inductively
to obtain that A is in the weak topology. If X = Xn has weak topology then
A = A ∩Xn is in the quotient topology. Proceed similarly for closed sets. �

Let n ∈ N0 and define qn to be the quotient map Xn−1
∐

αD
n
α → Xn sending

each point to its equivalence class under the identifications of definition 2.1.
The map qn is not defined if X does not have n-cells.

Definition 2.3. Let X be a CW -complex. The characteristic map of the cell
enα of X is defined to be the composition Φn

α : Dn
α ↪−→ Xn−1

∐
αD

n
α

qn−→ Xn ↪−→ X.

The characteristic maps Φ0
x0 are obtained to be the inclusion maps {x0} ↪−→

X. The characteristic map Φn
α of the cell enα in X is a continuous map and is

an extension of the attaching map φnα. Further Φn
α|intDnα : intDn

α → enα is a
homeomorphism. The weak topology on a CW -complex can be equivalently
formulated in terms of characteristic maps.

Lemma 2.4. Let X be a CW -complex. A subset A of the CW complex X is open
(or closed) if and only if (Φn

α)−1(A) is open (or closed) in Dn
α for cells enα of X.

Proof. If A is in the weak topology of X then (Φn
α)−1(A) is open by continuity

of Φn
α. Now let A ⊂ X be such that (Φn

α)−1(A) is open in Dn
α for each Φn

α. We
use induction on n to show that A is open. The base case of n = 0 is trivially
satisfied. Now suppose that A ∩ Xn−1 is open in Xn−1. Consider the quotient
map qn : Xn−1

∐
αD

n
α → Xn. Then A∩Xn is open inXn if and only if q−1(A∩Xn)

is open inXn−1
∐

αD
n
α. But this is equivalent to saying A∩Xn−1 is open inXn−1

and that (Φn
α)−1(A) is open in Dn

α for each α. �

Corollary 2.5. The CW -complex X is the quotient space of
∐
n,α

Dn
α obtained via

the quotient map
∐

n,α Φn
α.
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2.1 Examples of CW -complexes

Many topological spaces can be described as CW -complexes by defining the
required characteristic maps. However, it needs to be checked whether the
existing topology of a space agrees with the weak topology of the given CW -
complex structure. This section largely follows [Hatcher, 2002].

Example 2.6. Given any topological spaceX, a possibleCW -complex structure
is to take each point in X as a 0-cell. This makes the setX into a discrete space.

Example 2.7 (Graphs). With the tacit understanding that I is homeomor-
phic to D1 , graphs are CW -complexes Let us look at a particular graph whose
topology is not induced from a euclidean space. Consider the wedge sum of
circles ∨jS1 indexed over j ∈ N with the base point x0. Let X = {(x, y) ∈ R2 |
x2 + (y − 1/j)2 = j−2, j ∈ N}. It is easy to see that ∨jS1 and X can be identified
as sets and the canonical identification map ∨jS1 → X is continuous. However,
any sequence of points in the interiors of edges of ∨jS1 is closed. On the other
hand, we can have a sequence of non-zero points, with each point from a con-
stituent circle, that converges to the origin in X. Also X is compact but ∨jS1

is not. To see this, let q : x0

∐
j∈N Ij → ∨jS1 to be the quotient map associated

with the graph ∨jS1. Let Aj = [0, 1/2) ∪ (1/2, 1] ⊂ Ij and Bj = (1/3, 2/3). Then
{q(∪jAj)} ∪ {q(Bj)}j for j ∈ N is an open cover of ∨jS1 that does not have a
subcover.

It can be shown (see [Hatcher, 2002] p. 86) that the weak topology of a graph
with each vertex having only finitely many edges being incident is induced by
a euclidean space.

Example 2.8 (n-dimensional sphere and (n + 1)-dimensional disk). Let n be
a non-negative integer. Consider the n-sphere Sn = {(x0, x1, . . . , xn) ∈ Rn+1 |
||(x0, x1, . . . , xn)||2 = 1}. Let f : intDn → Rn be the continuous map defined at
x ∈ intDn by x 7→ x

||x|| tan
(
π
2
||x||

)
if x 6= 0 and

0 7→ 0.

Let σ be the inverse stereographic projection of Rn onto Sn\{(1, 0, . . . , 0)} that
is defined at x = (x1, . . . , xn) ∈ Rn by

x = (x1, . . . , xn) 7→

(
||x||2 − 1

||x||2 + 1
,

2x1

||x||2 + 1
, . . . ,

2xn
||x||2 + 1

)
.

17



Let σ̃ = σ ◦ f . Then Sn has a CW -complex structure with the characteristic
maps as Φ0 : D0 → Sn and Φn : Dn → Sn defined by

Φ0(∗) = (1, 0, . . . , 0) and Φn(x) =

(1, 0, . . . , 0) if x ∈ ∂Dn ,

σ̃(x) if x ∈ intDn.

We thus decompose Sn as the disjoint union of cells e0
∐
en. Here the set of

skeleta is {D0, . . . , D0, Sn}. It is easy to see that the CW -complex structure
described here agrees with the subspace topology of Sn.

To see that Dn+1 ⊂ Rn+1 is a CW -complex, the above maps Φ0 and Φn along
with the identity map of Dn+1 are taken to be the required characteristic maps.
Consequently, the set of skeleta is {D0, . . . , D0, Sn, Dn+1}. As a set, Dn+1 is the
disjoint union e0

∐
en
∐
en+1 of cells.

Example 2.9 (n-dimensional sphere). The CW -complex structure on a space
X need not be unique. Consider Sn again, with the characteristic maps Φk

± :

Dk → Sn defined at x ∈ Dk by

Φk
+(x) = (x,

√
1− ||x||2, 0, . . . , 0) and

Φk
−(x) = (x,−

√
1− ||x||2, 0, . . . , 0)

for k = 0, . . . , n. Under this CW -complex structure, Sn is the disjoint union
e0

+

∐
e0
−
∐
· · ·
∐
en+
∐
en−. The set of skeleta is {S0, S1, . . . , Sn}. Each k-skeleton

here contains two k-cells. The weak topology of this CW -complex structure
agrees with the subspace topology of Sn.

Example 2.10 (n-dimensional real projective space). Let n be a non-negative
integer. The n-dimensional real projective space RP n is defined to be the quo-
tient space obtained from Sn via the identifications v ∼1 −v for v ∈ Sn. It is
also defined to be the quotient space obtained from Dn via the identifications
v ∼2 −v for v ∈ ∂Dn.

Since the identifications ∼2 on ∂Dn = Sn−1 result in RP n−1, we define
a CW -complex structure on the quotient space RP n with the set of skeleta
{RP 0, . . . ,RP n} and the characteristic maps as the quotient projection maps
Dk → RP k−1 for k = 0, . . . , n. Thus RP n is the disjoint union e0

∐
. . .
∐
en. Each

k-skeleton contains one k-cell.

Example 2.11 (Infinite sphere and infinite-dimensional real projective space).
Consider the characteristic maps of example 2.9 for k ∈ N0. We thus obtain the
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space ∪n∈N0S
n called as the infinite sphere, denoted by S∞. The topology on S∞

is the weak topology with respect to the subspaces Sn. Similarly, considering
the characteristic maps of example 2.10 for k ∈ N0, we obtain the infinite-
dimensional real projective space RP∞ = ∪n∈N0RP n. It is easy to see that RP∞

is the quotient space of S∞. The infinite sphere occurs in other topological
contexts too. In section 2.3 , we will compare the various topologies on the
infinite sphere.

2.2 Products of CW -complexes
This section is sourced from [Lundell and Weingram, 2012](p. 26-27 and p.
56-57). Let X and Y be two CW -complexes. Denote the p-cells of X by epα for
α ∈ Λ. Similarly denote the q-cells of Y by f qβ for β ∈ Ω. Denote the respective
characteristic maps of X as Φp

α and the respective characteristic maps of Y as
Ψq
β. We will build a CW -complex X ×CW Y from X and Y as follows. For this,

note thatDn ∼= Dp×Dq and ∂Dn ∼= (∂Dp×Dq)∪ (Dp×∂Dq) for all non-negative
integers p, q and n such that p+ q = n.

(i) Let the product space X0 × Y 0 of 0-skeleta of X and Y be the 0-skeleton
(X ×CW Y )0.

(ii) Construct the n-skeleton (X ×CW Y )n from (X ×CW Y )n−1 by attaching the
cells epα × f

q
β such that p+ q = n via the restriction of characteristic maps

Φp
α ×Ψq

β : (∂Dp
α ×D

q
β) ∪ (Dp

α × ∂D
q
β)→ (X ×CW Y )n−1.

In such a case, as a set

(X ×CW Y )n = (X ×CW Y )n−1
∐
α,β,

p+q=n

epα × f
q
β .

If no cells epα and f qβ exist such that p + q = n, then let (X ×CW Y )n =

(X ×CW Y )n−1.

(iii) Set X ×CW Y = ∪n∈N0 (X ×CW Y )n with the weak topology with respect to
the subspaces (X ×CW Y )n.

Lemma 2.12. Let X and Y be CW -complexes. The identity map X ×CW Y →
X × Y is a continuous map
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Proof. We note that as sets (X ×CW Y ) = X × Y . Further, the projection maps
X ×CW Y → X and X ×CW Y → Y are continuous. The result follows. �

In general, the weak topology on X×CW Y has more open sets than the prod-
uct topology. The following example from [Dowker, 1952](p. 563-564) illustrates
this.

Example 2.13. Let X be a graph with uncountably many edges incident on
a vertex x0 and Y be a graph with countably many edges incident on a vertex
y0. Further let the closures of these edges be homeomorphic to I (refer lemma
1.6). Index the closures Ai of edges incident on x0 by sequences i = (i1, i2, . . .) of
integers. Index the closures Bj of edges incident on y0 by j ∈ N. Parametrize
Ai by Ii and Bj by Ij using the corresponding characteristic maps such that
x0 is the image of 0 ∈ Ii and y0 is the image of 0 ∈ Ij. Consider the collection
P = {(1/ij, 1/ij) ∈ Ai × Bj}(i,j) of points in X × Y . Since the intersection of
P with Ai × Bj for each pair (i, j) is a point, the set P is closed in X ×CW Y .
However P is not closed in product space X × Y . We claim that (x0, y0) is in
the closure of P in X × Y . For this, we will show that any neighborhood of
(x0, y0) in the product space X × Y contains a point in P . Let U × V be a basic
product open neighborhood of (x0, y0) in X × Y . A basic open neighborhood U
of x0 in X is the union of open neighborhoods [0, ai) of 0 ∈ Ii for ai ∈ (0, 1).
A basic open neighborhood V of y0 in Y is the union of open neighborhoods
[0, bj) of 0 ∈ Ij for bj ∈ (0, 1). Let the index ı̂ = (̂ı1, ı̂2, . . .) be chosen such that
ı̂j ≥ max {j, 1/bj} for each j. Choose the index ̂ such that ̂ ≥ 1/aı̂. Then U × V
contains (1/ı̂̂, 1/ı̂̂) ∈ P because 1/ı̂̂ belongs to both [0, aı̂) and [0, b̂).

Both weak topology and product topology onX×CWY agree in, among others,
one case. We have the following from [Milnor, 1956a](p. 272).

Lemma 2.14. Product of countable CW -complexes is a CW -complex.

Example 2.15. Let X = Sm × Sn. Let p0 = (1, 0, . . . , 0) ∈ Sm and q0 =

(1, 0, . . . , 0) ∈ Sm. Consider the CW -complex structures of example 2.8 on Sm

and Sn. Denote the characteristic maps of Sm as Φ0 and Φm. Denote the charac-
teristic maps of Sn as Ψ0 and Ψn. A CW -complex structure on X given by the
characteristic maps Φ0 ×Ψ0, Φ0 ×Ψn, Φm ×Ψ0 and Φm ×Ψn; this agrees with
the subspace topology of X from Rm+1 × Rn+1. One could also begin with the
CW -complex structure of example 2.9 on Sm and Sn.
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2.3 The infinite sphere

In this section, we will show that the infinite sphere S∞ in example 2.11 can
be obtained as a subspace of countable product of R. Also, we will look at the
group S1 acting on S∞.

Let Rω denote the countable product of R. The standard bounded metric
on R is defined as d̄(a, b) = min{|a − b|, 1} for a, b ∈ R. Let x = (x1, x2, . . .) and
y = (y1, y2, . . .) in Rω. The product topology on Rω is induced by the product
metric

D(x, y) = sup
i∈N

{
d̄(xi, yi)

i

}
.

A basic open set in product topology is of the form
∏

i Ui, where each Ui is an
open subset of R and only finitely many of Ui are proper subsets of R. The
uniform topology on Rω is induced by the metric

ρ(x, y) = sup
i∈N
{d̄(xi, yi)}.

Denote `2(R) to be the subset consisting of all sequences x = (x1, x2, . . .) ∈ Rω

such that
∑

i∈N x
2
i converges. The topology induced by the norm

||x||
`2

=

[∑
i∈N

x2
i

]1
2

on `2(R) is called the `2-topology. Apart from this topology, `2(R) also inherits
product topology and uniform topology from Rω. It is a well-known fact that
`2(R) in `2-topology is a Hilbert space ([Kreyszig, 1989] p. 133). The inner
product that induces the `2-norm is defined by

〈x, y〉 =
∑
i∈N

xiyi

for x = (x1, x2, . . .), y = (y1, y2, . . .) ∈ `2(R). Also known ([Munkres, 2000] p.
127-128) is that these three topologies follow the inclusions

product topology ⊂ uniform topology ⊂ `2-topology .

Let S denote the unit sphere {x ∈ `2(R) | ||x||
`2

= 1} in `2(R).
To compare the various topologies inherited by S from `2(R), we will make

use of the following two lemmas regarding convergences in `2(R). The former
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lemma is from [Kreyszig, 1989](p. 261) and the latter is from [Bessaga and
Peł czyński, 1975](p. 47).

Lemma 2.16. Let (xn)n∈N be a sequence in `2(R) and let x ∈ `2(R). Then (〈xn, y〉)n
converges to 〈x, y〉 for y ∈ `2(R) if and only if

(i) the sequence (||xn||`2 )n is bounded, and

(ii) (xn)n converges to x coordinate-wise.

Lemma 2.17. Let (xn)n∈N be a sequence in `2(R) and x ∈ `2(R) such that 〈xn, y〉
converges to 〈x, y〉 for y ∈ `2(R), and ||xn||`2 converges to ||x||

`2
. Then ||xn − x||`2

converges to zero.

The next lemma is from [Bessaga and Peł czyński, 1975](p. 174).

Lemma 2.18. The product, uniform and `2-topologies on S inherited from `2(R)

are equivalent.

Proof. On `2(R) we have the inclusions, product topology ⊂ uniform topology
⊂ `2-topology. Hence it suffices to show that coordinate-wise convergence of se-
quences in S implies convergence in `2-norm. Choosing (xn)n∈N to be a sequence
in S that converges to x ∈ S coordinate-wise, the above two lemmas give the
required result. �

Theorem 2.19. The subspace

{x ∈ S | x = (x1, x2, . . . , xi, . . .) such that xi vanishes for all but finitely many i}

of unit sphere S in `2(R) is the infinite sphere S∞.

Proof. As all topologies on S inherited from `2(R) are equivalent, let us consider
S with product topology. Then it is easy to see that on S∞ the weak topology
with respect to the subspaces Sn agrees with the subspace topology inherited
from S. �

Corollary 2.20. The infinite-dimensional real projective space RP∞ is the quo-
tient space obtained from the infinite sphere S∞ via the identifications x ∼ −x
for x ∈ S∞. �

Finite-dimensional spheres are not contractible; they have non-trivial ho-
motopy groups. The situation, however, is different for S and S∞. The following
result is from [Hatcher, 2002](p. 88).
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Theorem 2.21. The unit sphere of `2(R) and the infinite sphere S∞ are con-
tractible.

Proof. Consider the continuous linear operator T : `2(R) → `2(R) defined by
(x1, x2, . . .) 7→ (0, x1, x2, . . .) for x = (x1, x2, . . .) ∈ `2(R). Define F : `2(R) × I →
`2(R) by F (x, t) = (1−t)x+tT (x) for (x, t) ∈ `2(R)×I. DefineG : `2(R)×I → `2(R)

by G(x, t) = (1− t)T (x) + t(1, 0, . . .) for (x, t) ∈ `2(R)× I. The required homotopy
H : S × I → S is defined by

H(x, t) =



F (x, 2t)

||F (x, 2t)||
, if 0 ≤ t ≤ 1

2

G(x, 2t− 1)

||G(x, 2t− 1)||
, if 1

2
≤ t ≤ 1.

To see that S∞ is contractible, replace S by S∞ in the above homotopy. �

We end this chapter with defining a special kind of map between CW -
complexes and give an example of such a map. The example also occurs in
more important contexts; it will be referred to in chapter 5.

Definition 2.22. A continuous map f : X → Y of CW -complexes is said to be
cellular if it carries the k-skeleton of X into the k-skeleton of Y , that is, f(Xn) ⊂
Y n for n ∈ N0.

Lemma 2.23. There is a canonical free left-action of S1 on `2(R) that is contin-
uous with respect to the product, uniform and `2-topologies. Further it preserves
S and S∞. The group action S1 × S∞ → S∞ is a cellular map.

Proof. Define f : S1 × `2(R)→ `2(R) by

(eiθ, (x1, y1, x2, y2, . . .))

7→ (Re eiθ(x1 + iy1), Im eiθ(x1 + iy1),Re eiθ(x2 + iy2), Im eiθ(x2 + iy2), . . .)

for eiθ ∈ S1 and (x1, y1, x2, y2, . . .) ∈ `2(R).
Let d generically denote the product metric, uniform metric or the metric

induced by `2-norm on `2(R). The product topology on S1× `2(R) is given by the
metric d̃

(
(eiθ, z), (eiα, w)

)
= |eiθ − eiα| + d(z, w) for (eiθ, z), (eiα, w) ∈ S1 × `2(R).

Given ε > 0, choose δ = ε
2
(1 + d(w, 0))−1 so that d

(
eiθ · z, eiα · w

)
< ε whenever

d̃
(
(eiθ, z), (eiα, w)

)
< δ. It is easy to check that this choice of δ works by noting
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that the metric d on `2(R) satisfies the properties d
(
eiθ · z, eiθ · w

)
= d(z, w) and

d(eiθ · z, eiα · z) ≤ |eiθ − eiα|d(z, 0).
The second part of the theorem is true for both CW complex structures of

examples 2.8 and 2.9. �
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Chapter 3

Joins

An octahedron can be regarded as the space of line
segments joining e thpoints of the equatorial square
to the apical points such that two line segments inter-
sect, if at all, only at the end points. This space of line
segments is called a join. Thus, a circle can be thought
of (up to homeomorphism) as a join of the set of unit
vectors of x-axis and the set of unit vectors of y-axis,
on a plane.

For realizing join in a more general setting, it is
most natural to think about this space of line segments in a vector space. Hence
consider two non-empty subsets X1 and X2 of a topological vector space V with
subspace topology. Motivated with the examples of an octahedron and a circle,
we construct join of spaces X1 and X2 by taking union of line segments joining
points inX1 to points inX2 such that if two line segments meet, then they meet
only at the end points.

However, this construction is raw and unwieldy. If we want to construct join
of two intersecting subsets of a vector space, the condition on the intersection
of a pair of line segments is impossible to satisfy. Even for disjoint subsets this
strange condition seems elusive, like in the case of join of two compact intervals
of the real line. Moreover, it is not clear that this construction is independent
of the ambient vector space. Perhaps if the construction were independent, we
can look for join of two compact intervals of real line by embedding them in a
higher dimensional vector space. Nonetheless, with these issues resolved, the
notion of join seems to be associated only with vector spaces.

In this chapter, we will construct join of arbitrary topological spaces in var-
ious ways and compare the topologies of these constructions. Only non-empty
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topological spaces are considered in this chapter. Exposition here is mainly
based on [Brown, 2006] with [Hatcher, 2002], [Milnor, 1956b] and [Fritsch and
Golasiński, 2004] as other references.

3.1 Join of two spaces

Definition 3.1. Let X1 and X2 be topological spaces that can be embedded in
Rn1 and Rn2 respectively. The join J(X1,X2) of spaces X1 and X2 is defined to
be the subspace of line segments in Rn1×Rn2×R joining points inX1×{0}×{0}
to points in {0} ×X2 × {1}. That is, the join J(X1, X2) is given by

{(tx1, (1− t)x2, (1− t)) ∈ Rn1 × Rn2 × R | x1 ∈ X1, x2 ∈ X2, t ∈ [0, 1]}

with the subspace topology inherited from Rn1 × Rn2 × R .

The above definition resolves the issue of existence of join for a pair of subsets
of a vector space; one moves to a higher dimensional space to construct their join.
Examining this construction closely, we see that any point p of join J(X1, X2)

lies on some line segment, say, joining (x1, 0, 0) ∈ X1×{0}× {0} and (0, x2, 1) ∈
{0}×X2×{1}. Thus p can be seen as the triad (x1, x2, t) where t determines the
position of point p on this line segment. If t is neither zero nor one, this triad is
unique. But if t is zero, there is no unique choice of x1. This is because a point
p of J(X1, X2) has its t parameter zero if and only if p lies in {0} ×X2 × {1} ⊂
J(X1, X2). Similarly, if a point of J(X1, X2) has t parameter one, there is no
unique choice of x2 to describe the point as a triad.

We have the following from [Hatcher, 2002](p. 9).

Definition 3.2. LetX1 andX2 be topological spaces. The joinX1∗X2 of spaces
X1 and X2 is defined to be the quotient space obtained from the product space
X1×X2×I via the identifications (x1, x2, 0) ∼ (x′1, x2, 0) and (x1, x2, 1) ∼ (x1, x

′
2, 1)

for x1, x
′
1 ∈ X1 and x2, x

′
2 ∈ X2.

We have the following from [Milnor, 1956b](p. 430).

Definition 3.3. LetX1 andX2 be topological spaces. The joinX1◦X2 ofX1 and
X2 is defined as the collection of points described as formal convex combinations
tx1 ⊕ (1 − t)x2 for x1 ∈ X1, x2 ∈ X2 and t ∈ [0, 1]. If t = 0, then x1 is chosen
arbitrarily or omitted. If t = 1, then x2 is chosen arbitrarily or omitted. The
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topology on join X1 ◦X2 is the smallest topology such that the coordinate maps

θ : X1 ◦X2 → I , χ1 : θ−1((0, 1])→ X1 and χ2 : θ−1([0, 1))→ X2

are continuous.

A subbasis for the topology on join X1 ◦ X2 is given by the union of the
following kinds of sets.

(i) θ−1(U) = {tx1 ⊕ (1− t)x2 | x1 ∈ X1, x2 ∈ X2, t ∈ U} for U open in [0, 1].

(ii) χ−1
1 (U) = {tx1 ⊕ (1− t)x2 | x1 ∈ U, x2 ∈ X2, t ∈ (0, 1]} for U open in X1.

(iii) χ−1
2 (U) = {tx1 ⊕ (1− t)x2 | x1 ∈ U, x2 ∈ X2, t ∈ [0, 1)} for U open in X2.

Let f be a function into the join X1 ◦X2. Call the maps θ ◦f , χ1 ◦f and χ2 ◦f ,
defined on appropriate domains, as the coordinates of f . Thus f is continuous
if and only if the coordinates of f are continuous.

Let X1 and X2 be Hausdorff spaces. Are the joins X1 ∗X2 and X1 ◦X2 Haus-
dorff? The answer is affirmative for X1 ◦ X2. The author does not know the
answer in case of X1 ∗X2.

The following is from [Brown, 2006](p. 171).

Lemma 3.4. Let X1 and X2 be Hausdorff topological spaces. Then the join
X1 ◦X2 is Hausdorff.

Proof. Let x = tx1 ⊕ (1 − t)x2 and y = sy1 ⊕ (1 − s)y2 be two distinct points of
X1 ◦X2 where x1, y1 ∈ X1, x2, y2 ∈ X2, and t, s ∈ [0, 1]. If t 6= s, find open sets Ut
and Us in I that separate t and s respectively. Then θ−1(Ut) and θ−1(Us) are open
sets in X1 ◦X2 that separate x and y respectively. If t = s 6= 0, find open sets Ux1
and Uy1 in X1 that separate x1 and y1 respectively. Then χ−1

1 (Ux1) and χ−1
1 (Uy1)

are open sets in X1 ◦ X2 that separate x and y respectively. If t = s = 0, find
open sets Ux2 and Uy2 in X2 separating x2 and y2 respectively. The sets χ−1

2 (Ux2)

and χ−1
2 (Uy2) are open sets in X1 ◦ X2 that separate x and y respectively in

X1 ◦X2. �

Now we will show that various joins constructed are equivalent as sets. We
will further compare their topologies.

Lemma 3.5. Let X1 and X2 be subsets of Rn1 and Rn2 respectively. Then there
exists a canonical bijection from the join X1 ∗X2 onto the join J(X1, X2) that is
continuous. If X1 and X2 are compact, then this map is a homeomorphism.
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Proof. Let q be the quotient map from X1 ×X2 × I onto X1 ∗X2 sending each
point (x1, x2, t) to its equivalence class [(x1, x2, t)]. Define g to be the map from
X1 ×X2 × I to J(X1, X2) that sends (x1, x2, t) to the point (tx1, (1 − t)x2, 1 − t).
The map g is well-defined, surjective and continuous (consider sequences). On
the collection of points in X1 ×X2 × I with t neither zero nor one, g is injective.
Furthermore, for every x1 and x2, the map q collapses each fiber g−1(x1, 0, 0) and
g−1(0, x2, 1). Hence from theorem A.4, there exists a well-defined continuous
bijection h defined by [(x1, x2, t)] 7→ (tx1, (1− t)x2, 1− t) such that the following
diagram commutes.

X1 ×X2 × I J(X1, X2)

X1 ∗X2

g

q
h

If X1 and X2 are compact then so is X1 ∗X2. The space J(X1, X2) is Hausdorff.
Thus follows the second part of the theorem. �

Lemma 3.6. LetX1 andX2 be two topological spaces. Then there exists a canon-
ical bijection from the join X1 ∗X2 onto the join X1 ◦X2 that is continuous. If
X1 and X2 are compact and Hausdorff, then this map is a homeomorphism.

Proof. Define g : X1 × X2 × I → X1 ◦ X2 by (x1, x2, t) 7→ tx1 ⊕ (1 − t)x2. Let
q : X1×X2×I → X1∗X2 be the quotient map sending (x1, x2, t) to its equivalence
class [(x1, x2, t)]. The map g induces a well-defined bijection h : X1∗X2 → X1◦X2

such that the following diagram commutes.

X1 ×X2 × I X1 ◦X2

X1 ∗X2

g

q
h

The map h is continuous if and only if g is continuous. Consider the coordinates
of g. We have

θ ◦ g : (x1, x2, t) 7→ t,

χ1 ◦ g : (x1, x2, t) 7→ x1, and
χ2 ◦ g : (x1, x2, t) 7→ x2.

The map θ ◦ g is defined on X1 × X2 × I. The map χ1 ◦ g is defined at points
(x1, x2, t) with t non-zero, and the map χ2 ◦ g is defined at the points (x1, x2, t)
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with (1− t) non-zero. We see that the domains of χ1 ◦ g and χ2 ◦ g are open sets
in X1 × X2 × I. Certainly the coordinates of g are continuous and hence the
map g is continuous. If X1 and X2 are compact spaces then X1 ∗X2 is compact.
If X1 and X2 are Hausdorff then X1 ◦X2 is Hausdorff. Thus follows the second
part of the theorem. �

Lemma 3.7. Let X1 and X2 be subsets of Rn1 and Rn2 respectively. Then there
exists a canonical bijection from the join J(X1, X2) onto the join X1 ◦X2 that is
continuous. If X1 and X2 are compact, then this map is a homeomorphism.

Proof. Define the map h : J(X1, X2)→ X1 ◦X2 by

(tx1, (1− t)x2, 1− t) 7→ tx1 ⊕ (1− t)x2.

Considering the coordinates of the map h, it is easy to see that h is a continuous
map. The second part of the theorem follows from the previous two lemmas. �

Example 3.8. Let X1 and X2 be two copies of the unit closed interval. To
construct the join X1 ∗X2, consider the cube X1×X2× I, as shown in figure 3.1.
We collapse the face X1×X2×{0} onto {0}×X2×{0}, and X1×X2×{1} onto
X1×{0}×{1}. The joins J(X1, X2),X1 ∗X2 and X1 ◦X2 are homeomorphic, and
hence X1 ∗X2 is the tetrahedron in R3 as shown.

X2

I

X1 X2X1

Figure 3.1: Join of closed interval with itself.

Now we consider examples that show that the inclusions among various
topologies on join are strict.

Example 3.9. LetX1 = (0, 1) andX2 = {∗}. Refer figure 3.2. The join J(X1, X2)

is an open triangular region along with a side and its opposite vertex included.
The side and the opposite vertex are X1 and X2, respectively, considered as
subspaces of J(X1, X2). To construct X1 ∗X2, we begin with X1×X2× I, which
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is a square region with a pair of opposite sides included and all vertices deleted.
Consider the quotient map q : X1×X2×I → X1∗X2 and the map g : X1×X2×I →
J(X1, X2) as in the proof of theorem 3.5. Let U be the gray open region in
X1 ×X2 × I as shown. The image q(U) is open in X1 ∗X2. However, the image
f(U) is not open in J(X1, X2) because it contains the vertex X2; any open set
of J(X1, X2) containing the vertex X2 must contain the entire angle described
about it.

(0, ∗, 0) (1, ∗, 0)

(0, ∗, 1) (1, ∗, 1)
X1

X2

X1

J(X1, X2)(0, 1)× {∗} × I

f

Figure 3.2: Joins X ∗ Y and J(X, Y ) are not homeomorphic.

Example 3.10. Let X1 = Q and X2 = {∗}. Consider the joins X1 ◦ X2 and
J(X1, X2). Let ε ∈ (0, 1). Then θ−1([0, ε)) = {tx ⊕ (1 − t)∗ | 0 ≤ t < ε, x ∈ Q} =

∪x∈Q{tx⊕ (1− t)∗ | t < ε
x
} is not open in J(X1, X2).

3.2 Join of multiple spaces
The joins J(X1, X2) and X1 ◦ X2 can be seamlessly generalized for multiple
spaces. However, there seems to be no clear way of generalizing X1 ∗ X2. We
will see how other notions of joins, when generalized, offer a consistent way of
defining join of multiple spaces as a quotient space.

Definition 3.11. Let X1, . . . , Xn be topological spaces such that there exist in-
clusion maps Xj ↪−→ Rkj for j = 1, . . . , n. Embed eachXj in Rk1×· · ·×Rkn×Rn−1

by mapping x ∈ Xj to the point

(0, . . . , 0, xj, 0, . . . , 0, ej−1)

that has xj at the jth position, and ej−1 is the unit vector in Rn−1 that has 1 at
the (j − 1)th position. Define the n-fold join J(X1, . . . , Xn) to be the set of points
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t1x1 + · · ·+ tnxn for xj ∈ Xj and non-negative real numbers t1, . . . , tn such that
t1 + · · · + tn = 1. The n-fold join is given the subspace topology inherited from
Rk1 × . . .× Rkn × Rn−1.

To generalize above definition to an arbitrary family of spaces, we will use
functional notation for describing points in a Cartesian product ([Munkres,
2000] p. 113). Let {Aα}α∈Λ be an indexed family of spaces. The Cartesian prod-
uct

∏
α∈ΛA

α is regarded as the set of all functions

f : Λ→
⋃
α∈Λ

Aα

such that f(α) ∈ Aα for each α. If all the spaces Aα are equal to one set, say A,
then the Cartesian product

∏
α∈ΛAα of this family is the set AΛ of all Λ-tuples

f : Λ→ A.

Definition 3.12. Let {Xα}α∈Λ be an indexed family of topological spaces such
that there exist inclusion mapsXα ↪−→ Rnα for each α. Consider the product space∏

α∈ΛRnα × RΛ. For each α, let ια : Xα ↪−→
∏

α∈ΛRnα × RΛ be the embedding that
maps xα ∈ Xα to the point ια(xα) = (ι1α(xα), ι2α(xα)) where

ι1α(xα) : Λ→
⋃
α∈Λ

Rnα is defined by

ι1α(xα)(α) = xα,

ι1α(xα)(β) = 0 ∈ Rnβ such that β 6= α
,

and ι2α(xα) : Λ→ R is defined by

ι2α(xα)(α) = 1,

ι2α(xα)(β) = 0 for β ∈ Λ such that β 6=
.

Define the Λ-fold join J(Xα)α∈Λ to be the set of points
∑

α∈Λ tαια(xα). Each point
has all but finitely many non-negative real parameters tα vanishing and satisfies∑

α∈Λ tα = 1. If a parameter tα of a point
∑

α tαια(xα) is zero, then xα ∈ Xα is
chosen arbitrarily or omitted. The join J(Xα)α∈Λ is given the subspace topology
inherited from

∏
α∈ΛRnα × RΛ.

Without any loss of clarity, we will write a point of J(Xα)α as
∑

α tαxα. When
the indexing set Λ is finite, the above definition is not equivalent to the earlier
definition of n-fold join. The points of n-fold join of definition 3.11 have their last
coordinate in Rn−1 whereas the points of {1, . . . , n}-fold join of definition 3.12
have their last coordinate in Rn. However, both constructions are canonically
equivalent due to the constraint that the non-negative reals t1, . . . , tn add up
to one.
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Definition 3.13. Let {Xα}α∈Λ be an indexed family of topological spaces. Define
the join ◦α∈ΛXα to be the set of points each of which is described by

(i) non-negative real parameters tα that vanish for all but finitely many α and
satisfy

∑
α∈Λ tα = 1; and

(ii) values xα ∈ Xα for α such that tα is non-zero.

Each point of ◦α∈ΛXα is denoted as⊕α∈Λtαxα. If a parameter tα of a point⊕α∈Λtαxα

is zero, then xα ∈ Xα is chosen arbitrarily or omitted in this notation.
The topology on ◦α∈ΛXα is the smallest one such that the coordinate functions

θα : ◦α∈ΛXα → [0, 1] and χα : θ−1
α ((0, 1])→ Xα

are continuous for every α.

Let f be a function into the join ◦α∈ΛXα. Call the maps θα ◦ f and χα ◦ f ,
defined on appropriate domains, for α ∈ Λ as the coordinates of f . Thus f is
continuous if and only if the coordinates of f are continuous.

Are join operations, when indexing set Λ is finite, of definitions 3.11 and
3.13 associative? The answer is yes, up to homeomorphism.

We have the following theorem from [Brown, 2006](p. 170).

Theorem 3.14. Let X1, . . . , Xn be topological spaces. Then there exists a canon-
ical homeomorphism

hi : (X1 ◦ · · · ◦Xi) ◦ (Xi+1 ◦ · · · ◦Xn)→ X1 ◦ · · · ◦Xn

for i = 1, . . . , n.

Proof. For i ∈ {1, . . . , n}, let hi be the mapping

x = r(s1x1 ⊕ · · · ⊕ sixi)⊕ (1− r)(si+1xi+1 ⊕ · · · ⊕ snxn)

7→ rs1x1 ⊕ · · · ⊕ rsixi ⊕ (1− r)si+1xi+1 ⊕ · · · ⊕ (1− r)snxn

where r, sj ∈ [0, 1], xj ∈ Xj for j = 1, . . . , n and s1 + · · ·+ si = 1 = si+1 + · · ·+ sn.
The map hi is well-defined and bijective. Let us check that the coordinates of
hi are continuous. Consider the coordinate maps, for j ≤ i,

θj : x 7→

rsj , if r 6= 0 ,

0 , if r = 0 ,
and χj : x 7→ xj.
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Here χj is defined only at the points x with r 6= 0 and sj 6= 0. Hence χj is the
composition x 7→ s1x1 ⊕ · · · ⊕ sixi 7→ xj of continuous maps. For continuity of
θj, first consider the case r 6= 0. The collection of all points x with r 6= 0 forms
an open set. On this set, θj is the product of the continuous maps x 7→ r and
x 7→ s1x1 ⊕ . . . ⊕ sixi 7→ sj. Now let r = 0. For δ ∈ (0, 1], the set θ−1

j ([0, δ)) is
given by the union {x | 0 ≤ sj ≤ 1} ∪r∈(0,1] {x | 0 < sj < δ/r} of open sets. This
completes the case for j ≤ i. Now consider the coordinate maps, for j > i,

θj : x 7→

(1− r)sj if (1− r) 6= 0

0 if (1− r) = 0
and χj : x 7→ xj.

Here χj is defined at the points x with (1− r) 6= 0 and sj 6= 0. Continuity of θj
and χj for j > i follows from arguments similar to the case j ≤ i.
Now to show that hi is a homeomorphism, define the inverse map by

x = r1x1 ⊕ · · · ⊕ rnxn 7→ r(s1x1 ⊕ · · · ⊕ sixi) ⊕ (1 − r)(si+1xi+1 ⊕ · · · ⊕ snxn)

where rj ∈ [0, 1], xj ∈ Xj for j = 1, . . . , n such that r1 + · · · + rn = 1 and
r := r1 + · · ·+ ri,

sj :=

r−1rj , if r 6= 0 ,

0 , if r = 0 ,
for 1 ≤ j ≤ i,

sj :=

(1− r)−1rj , if (1− r) 6= 0 ,

0 , if (1− r) = 0 ,
for i+ 1 ≤ j ≤ n.

Consider the coordinates of the inverse map. The map x 7→ r is the sum of
the continuous maps x 7→ rj for 1 ≤ j ≤ i. The map x 7→ s1x1 ⊕ · · · ⊕ sixi is
defined at the points x with r 6= 0, whence this map can be written as the
product of the maps x 7→ r1x1⊕ · · ·⊕ rixi and x 7→ r−1. Similarly, the coordinate
x 7→ si+1xi+1 ⊕ · · · ⊕ snxn is continuous. �

Corollary 3.15. Let X1, X2 and X3 be topological spaces. Then the joins (X1 ◦
X2) ◦X3 and X1 ◦ (X2 ◦X3) are homeomorphic. �

Theorem 3.16. Let X1, . . . , Xn be topological spaces. Then there exists a canon-
ical homeomorphism

hi : J(J(X1, . . . , Xi), J(Xi+1, . . . , Xn))→ J(X1, . . . , Xn)
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for i = 1, . . . , n.

Proof. For i ∈ {1, . . . , n}, define hi by the rule

(r(s1x1, . . . , sixi, s2, . . . , si), (1− r)(si+1xi+1, . . . , snxn, si+2, . . . , sn), 1− r)

7→ (rs1x1, . . . , rsixi, (1− r)si+1xi+1, . . . , (1− r)snxn,

rs2, . . . , rsi, (1− r)si+1, . . . , (1− r)sn)

where r, sj ∈ [0, 1], xj ∈ Xj for j = 1, . . . , n and s1 + · · ·+ si = 1 = si+1 + · · ·+ sn.
It follows from sequential arguments that hi is continuous. Now define the
inverse map of hi as

(r1x1, . . . , rnxn, r2, . . . , rn) 7→

(r(s1x1, . . . , sixi, s2, . . . , si), (1− r)(si+1xi+1,

. . . , snxn, si+2, . . . , sn), 1− r)

where rj ∈ [0, 1], xj ∈ Xj for j = 1, . . . , n such that r1 + · · · + rn = 1 and
r := r1 + · · ·+ ri,

sj :=

r−1rj , if r 6= 0 ,

0 , if r = 0 ,
for 1 ≤ j ≤ i,

sj :=

(1− r)−1rj , if (1− r) 6= 0 ,

0 , if (1− r) = 0 ,
for i+ 1 ≤ j ≤ n.

It again follows from sequential arguments that the inverse map of hi is con-
tinuous. �

Corollary 3.17. Let X1, X2 and X3 be topological spaces that can be embedded
in euclidean spaces. Then the joins J(J(X1, X2), X3) and J(X1, J(X2, X3)) are
homeomorphic. �

Theorem 3.18. Let {Xj}j∈N be a countably infinite family of topological spaces.
Then there exists a canonical homeomorphism

hi : ( ◦
j≤i
Xj) ◦ ( ◦

j>i
Xj)→ ◦

j≥1
Xj

for i ∈ N.
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Proof. For i ∈ N, let hi be the mapping defined by

x = r(⊕
j≤i
sjxj)⊕ (1− r)(⊕

j>i
xk) 7→ ⊕

j≥1
rsjxj ⊕k>i (1− r)sjxj

where r, sj ∈ [0, 1], xj ∈ Xj for j ∈ N , all but finitely many sj vanish, and∑
j≤i sj = 1 =

∑
j>i sj . The map hi is well-defined and bijective. Let us check

that the coordinates of hi are continuous. The coordinate maps, for j ≤ i, are

θj : x 7→

rsj , if r 6= 0 ,

0 , if r = 0 ,
and χj : x 7→ xj.

The coordinate maps, for j > i are

θj : x 7→

(1− r)sj if (1− r) 6= 0

0 if (1− r) = 0
and χj : x 7→ xj.

The continuity of these coordinate maps is proved as in theorem 3.14. Now to
show that hi is a homeomorphism, define the inverse map by

x = ⊕
j≥1
rjxj 7→ r(⊕

j≤i
sixi)⊕ (1− r)(⊕

j<i
sjxj)

where rj ∈ [0, 1], xj ∈ Xj for j ∈ N, all but finitely many rj vanish,
∑

j≥1 rj = 1

and r := r1 + · · ·+ ri,

sj :=

r−1rj , if r 6= 0 ,

0 , if r = 0 ,
for 1 ≤ j ≤ i,

sj :=

(1− r)−1rj , if (1− r) 6= 0 ,

0 , if (1− r) = 0 ,
for j > i.

The continuity of coordinates of the inverse map too is proved in theorem 3.14.
�

Theorem 3.19. Let {Xj}j∈N be a countably infinite family of topological spaces.
Then there exists a canonical homeomorphism

hi : J(J(Xj)j≤i , J(Xj)j>i)→ J(Xj)j≥1

for i ∈ N.
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Proof. For i ∈ N, define hi by the rule(
r

(∑
j≤i

sjxj

)
, (1− r)

(∑
j>i

sjxj

)
, 1− r

)
7→
∑
j≤i

rsjxj +
∑
j>i

(1− r)sjxj

where r, sj ∈ [0, 1], xj ∈ Xj for j ∈ N , all but finitely many sj, for j > i vanish,
and

∑
j≤i sj = 1 =

∑
j>i sj. It follows from sequential arguments that hi is

continuous. Now define the inverse map of hi as

∑
j≥1

rjxj 7→

(
r

(∑
j≤i

sjxj

)
, (1− r)

(∑
j>i

sjxj

)
, 1− r

)

where rj ∈ [0, 1], xj ∈ Xj for j ∈ N, all but finitely many rj vanish,
∑

j≥1 rj = 1

and r := r1 + · · ·+ ri,

sj :=

r−1rj , if r 6= 0 ,

0 , if r = 0 ,
for 1 ≤ j ≤ i,

sj :=

(1− r)−1rj , if (1− r) 6= 0 ,

0 , if (1− r) = 0 ,
for j > i.

It again follows from sequential arguments that the inverse map of hi is con-
tinuous. �

We have an analogue of lemma 3.4 for multiple spaces.

Theorem 3.20. Let {Xα}α∈Λ be a family of Hausdorff spaces. Then the join
◦α∈ΛXα is a Hausdorff space.

Proof. Let x and y be two distinct points of ◦αXα. For some natural numbers
n and m, we write x = ⊕ni=1tαixxαix and y = ⊕mj=1sαjyyαjy where αix, αjy ∈ Λ,
xαix ∈ Xαix, yαjy ∈ Xαjy , tαix , tαjy ∈ (0, 1] for i = 1, . . . , n and j = 1, . . . ,m such
that

∑n
i=1 tαix =

∑m
j=1 sαjy = 1.

Case 1 If αix 6= αjy for some pair i, j then the open sets θ−1
αix

((0, 1)) and θ−1
αjy

((0, 1))

in ◦αXα separate x and y respectively.
Case 2 Let m = n and αix = αiy := αi for i = 1, . . . , n. If tα` 6= sα` for some
` ∈ {1, . . . , n} then separate these two parameters respectively by open sets
Ut and Us in (0, 1]. The open sets θ−1

α`
(Ut) and θ−1

α`
(Us) in ◦αXα separate x and y

respectively. If tαi = sαi for i = 1, . . . , n then xαk 6= yαk for some k ∈ {1, . . . , n}.
Let Vx and Vy be open sets in Xαk that separate xαk and yαk respectively. Then
the open sets χ−1

αk
(Vx) and χ−1

αk
(Vy) in ◦αXα separate x and y respectively. �
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Now let us generalize the definition 3.2 for multiple spaces.

Definition 3.21. For j = 1, . . . , n+ 1, letXj be the singleton containing the unit
vector ej of Rn+1 that has 1 as its jth coordinate. Define the n-simplex ∆n to be
the join J(X1, . . . , Xn+1). That is, ∆n is given by{

(t1, . . . , tn+1) ∈ Rn+1
∣∣ n+1∑
j=1

tj = 1, and 0 ≤ tj ≤ 1 for each j

}
.

We see that ∆1 is homeomorphic, via the rule (t, 1 − t) 7→ t, to the unit
closed interval. Thus the join X1 ∗ X2 can be regarded as the quotient space
obtained by identifying points of X1 ×X2 ×∆1. We also note that given a point
(t1x1, . . . , tnxn, t2, . . . , tn) of join J(X1, . . . , Xn), the vector (t1, . . . , tn) belongs to
∆n−1.

Definition 3.22. LetX1, . . . , Xn be topological spaces. Define the joinX1∗· · ·∗Xn

to be the quotient space obtained from product spaceX1×· · ·×Xn×∆n−1 via the
identifications (x1, . . . , xj−1, xj, xj+1, . . . , xn, ej) ∼ (x′1, . . . , x

′
j−1, xj, x

′
j+1, . . . , x

′
n, ej)

for xj, x′j ∈ Xj and j = 1, . . . , n.

Loosely speaking, we consider a copy of X1 × · · · ×Xn at each point of ∆n−1

and for j = 1, . . . , n, collapse the copy placed at ej ∈ ∆n−1 onto X1 × · · ·Xj−1 ×
Xj+1 × · · ·Xn.

Definition 3.23. Let Λ be an indexing set and consider the product space RΛ.
Let Xα be the singleton containing the point

eα : Λ→ R defined by

eα(α) = 1 and

eα(β) = 0 for β ∈ Λ such that β 6= α.

Define the Λ-simplex ∆Λ to be the join J(Xα)α∈Λ. That is, ∆Λ is given by{
t : Λ→ R

∣∣ 0 ≤ t ≤ 1, all but finitely many t(α) vanish and
∑
α∈Λ

t(α) = 1

}

with the subspace topology inherited from RΛ.

Definition 3.24. Let {Xα}α∈Λ be an indexed family of topological spaces. De-
fine the join ∗α∈ΛXα to be the quotient space obtained from the product space∏

α∈ΛXα × ∆Λ via the identifications, for each α ∈ Λ, (fα, eα) ∼ (f ′α, eα) for
fα, f

′
α ∈

∏
αXα such that fα(α) = f ′α(α).
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Finally, we compare these topologies. We have the following results.

Theorem 3.25. Let {Xα}α∈Λ be an indexed family of topological spaces such that
there exist inclusion maps Xα ↪−→ Rnα for each α. Then there exists a canonical
bijection from the join ∗α∈ΛXα onto the join J(Xα)α∈Λ that is continuous. If the
spaces Xα are compact, then this map is a homeomorphism.

Proof. Let q be the quotient map from
∏

α∈ΛXα×∆Λ onto ∗α∈ΛXα sending each
point (f, t) to [(f, t)]. Define g from

∏
α∈ΛXα×∆Λ to J(Xα)α∈Λ that sends (f, t) to

the point
∑

α t(α)f(α). The continuous map g induces a well-defined continuous
bijection h : ∗α∈ΛXα → J(Xα)α∈Λ such that the following diagram commutes.

∏
αXα ×∆Λ J(Xα)α

∗αXα

g

q
h

The Λ-simplex ∆Λ is a closed subspace of [0, 1]Λ. If {Xα}α is a collection of
compact spaces then

∏
α∈ΛXα×∆Λ is compact. Thus follows the second part of

the theorem. �

Theorem 3.26. Let {Xα}α∈Λ be an indexed family of topological spaces. Then
there exists a canonical bijection from the join ∗α∈ΛXα onto the join ◦α∈ΛXα that
is continuous. If the spaces Xα are compact, then this map is a homeomorphism.

Proof. Consider the continuous map g :
∏

α∈ΛXα × ∆Λ → ◦α∈ΛXα defined by
(f, t) 7→ ⊕αt(α)f(α). Let q be the quotient map from

∏
α∈ΛXα ×∆Λ onto ∗α∈ΛXα

sending each point (f, t) to [(f, t)]. The map g induces a well-defined continuous
bijection h : ∗α∈ΛXα → ◦α∈ΛXα such that the following diagram commutes.

∏
αXα ×∆Λ ◦αXα

∗αXα

g

q
h

If {Xα} is a collection of compact spaces then ∗α∈ΛXα is compact. If {Xα} is
a collection of Hausdorff spaces then ◦α∈ΛXα is Hausdorff. Thus follows the
second part of the theorem. �

Lemma 3.27. Let {Xα}α∈Λ be an indexed family of topological spaces such that
there exist inclusion maps Xα ↪−→ Rnα for each α. Then there exists a canonical
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bijection from the join J(Xα)α∈Λ onto the join ◦α∈ΛXα that is continuous. If the
spaces Xα are compact, then this map is a homeomorphism.

Proof. Define the map h : J(Xα)α∈Λ → ◦α∈ΛXα by∑
α

tαxα 7→ ⊕αtαxα.

Considering the coordinates of the map h, it is easy to see that h is a continuous
map. The second part of the theorem follows from the previous two lemmas. �

We do have the following simple case when the various topologies of joins
of spaces agree.

Theorem 3.28. Let {Xα}α∈Λ be a family of discrete topological spaces. Then
the joins ∗αXα and ◦αXα are homeomorphic. If each Xα can be embedded in a
euclidean space, then these joins are homeomorphic to the join J(Xα)α.

Proof. It suffices to prove that the canonical identity map h : ∗αXα → ◦αXα of
theorem 3.24 is an open map. Consider the quotient map q from

∏
α∈ΛXα×∆Λ

onto ∗α∈ΛXα sending each point (f, t) to [(f, t)]. Let U ⊂ ∆Λ be an open set. Then
q({f} × U) is mapped to

(⋃
α∈Λ

χ−1
α (f(α))

)⋂⋃
α∈Λ
t∈U

θ−1
α (t(α))


which is an open set in ◦αXα. Since any open set in ∗αXα can be written as the
union of sets of the form q({f} × U) for f ∈

∏
α∈ΛXα ×∆Λ and U open in ∆Λ ,

this finishes the proof. �

3.3 Homotopy groups of joins
Lemma 3.29. Let X1 and X2 be two topological spaces. Then the joins X1 ∗X2

and X1 ◦X2 are path connected. If X1 and X2 can be embedded in a euclidean
space, then J(X1, X2) is path connected.

Proof. It suffices to prove that X1 ∗X2 is path connected as there exist canoni-
cal continuous identity maps from X1 ∗X2 onto the other joins. Fix two points
[(a, ∗, 1)] and [(∗, b, 0)] in X1 ∗ X2 where ∗ denotes an arbitrary choice of co-
ordinate. Let [(x1, x2, t)] ∈ X1 ∗ X2 be given such that t 6= 0. Then the path
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γ : I → X1 ∗X2 defined by

s 7→

[(x1, x2, (1− 2s)t+ 2s)] for s ∈ [0, 1
2
] ,

[(x1, b, 2− 2s)] for s ∈ [1
2
, 1]

joins [(x1, x2, t)] to [(∗, b, 0)]. Let [(y1, y2, t)] ∈ X1 ∗ X2 be given such that t 6= 1.
Then the path δ : I → X1 ∗X2 defined by

s 7→

[(y1, y2, (1− 2s)t)] for s ∈ [0, 1
2
] ,

[(a, y2, 2s− 1)] for s ∈ [1
2
, 1]

joins [(y1, y2, t)] to [(a, ∗, 1)]. The points [(∗, b, 0)] and [(a, ∗, 1)] can be joined by
the path s 7→ [(a, b, s)]. �

Lemma 3.30. Let X1 and X2 be path connected topological spaces. Then the
joins X1 ∗X2 and X1 ◦X2 are simply connected. If X1 and X2 can be embedded
in a euclidean space, then J(X1, X2) is simply connected.

Proof. We will use van Kampen’s theorem to prove that X1 ∗X2 is simply con-
nected. Let q : X1 ×X2 × I → X1 ∗X2 be the quotient map sending each point
to its equivalence class. There exist canonical inclusions X1 ↪−→ X1 ∗ X2 and
X2 ↪−→ X1 ∗X2. Let the base point be u = (u1, u2,

1
2
) for some u1 ∈ X1 and u2 ∈ X2.

Let A = q(X1 ×X2 × (0, 1]) and B = q(X1 ×X2 × [0, 1)). The sets A and B are
open, path connected and coverX1 ∗X2. Also, A∩B = q(X1×X2× (0, 1)) is path
connected and contains the base point. The set A deformation retracts onto X1

via the homotopy A × I → A defined by ([(x1, x2, t)], s) 7→ [(x1, x2, (1 − s)t + s)].
The set B deformation retracts to X2 via the homotopy B × I → B defined by
([(x1, x2, t)], s) 7→ [(x1, x2, (1− s)t)]. The set A∩B deformation retracts to the set
q(X1 ×X2 × {1

2
}) via the homotopy A ∩B × I → A ∩B defined by

([(x1, x2, t)], s) 7→ [(x1, x2, (1− s)t+ s
2
)].

Hence π1(A, u) ∗ π1(B, u) = π1(X1, u1) ∗ π1(X2, u2) and π1(A ∩ B, u) = π1(X1 ×
X2, (u1, u2)) = π1(X1, u1) × π1(X2, u2). The inclusion maps ι1 : A ∩ B ↪−→ A and
ι2 : A ∩ B ↪−→ B induce projection maps ι1∗ : π1(X1, u1)× π1(X2, u2)→ π1(X1, u1)

and ι2∗ : π1(X1, u1)× π1(X2, u2)→ π1(X2, u2) respectively. The normal subgroup
generated by the elements γ1(γ2)−1, for γ1 × γ2 ∈ π1(A ∩ B, u), in π1(X1, u1) ∗
π1(X2, u2) is the whole group. By van Kampen’s, π1(X1 ∗X2, u) is trivial.

In a similar vein, it can be proved that X1 ◦ X2 and J(X1, X2) are simply
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connected.
�

In fact, we have a stronger result that we quote from Milnor[Milnor, 1956b].
The proof is skipped.

Theorem 3.31. Let X1, . . . , Xn+1 be topological spaces such that each space Xi

is (ci−1) connected. Then the joinsX1∗· · ·∗Xn+1 andX1◦· · ·◦Xn+1 are (
∑n+1

i=1 ci+

n−1)-connected. The corresponding result holds true for J(X1, . . . , Xn+1) if each
Xi can be embedded in a euclidean space. In particular, join of (n+ 1) spaces is
at least (n− 1)-connected.

Finally, we have the following whose proof is an easy consequence of corol-
laries 3.18 and 3.19.

Theorem 3.32. Let {Xj}j∈N be a countably infinite family of topological spaces.
Then the join ◦jXj is∞-connected. If each of the spaces Xj can be embedded in
a euclidean space, then an analogous result holds true for J(Xj)j.

Proof. Choose n ∈ N arbitrarily. Since ◦jXj is homeomorphic to the join X1 ◦
· · ·Xn ◦ ( X

j>n◦j
) of (n+ 1) spaces, it is at least (n− 1) connected. �

3.4 Further notes and references
We see that all constructions of join of multiple spaces can be canonically iden-
tified as sets. However, in general, the topologies differ, as seen in the examples
of section 3.1. Moreover, associativity does not hold true for the join defined as
a quotient space. Quoting [Hatcher, ] , “This is another instance of how mix-
ing product and quotient constructions can lead to bad point-set topological
behavior”.

The “technical awkwardness” of not possessing associativity is rectified by
working in another class of spaces, called k-spaces, with a redefined notion of
product of spaces. Refer [Brown, 2006] (section 5.9) and [Fritsch and Golasiński,
2004] (p. 471) for more details. The latter source also compares the various
topological joins (p. 469-470). In fact, it shows that all the constructions of joins
of two spaces are homotopy equivalent (p. 470).

The author of this thesis could not prove the join of locally compact spaces
with quotient topology is associative, as cited in [Fritsch and Golasiński, 2004].
Neither could the author construct examples showing that the join of arbitrary
spaces with quotient topology does not satisfy associativity.
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Chapter 4

Fiber Bundles

This chapter is a superficial introduction to the notions of fiber bundles and
principal G-bundles. The exposition is limited to what will be required for
construction of classifying space of a group in chapter 5. The references are
[Husemoller, 1994] and [Hatcher, 2002].

4.1 Fiber bundles

Definition 4.1. A continuous map p : E → B of topological spaces is said to
be a fiber bundle with fiber F if every point b ∈ B has an open neighborhood
U and a homeomorphism ΦU : p−1(U)→ U × F such that prU ◦ ΦU = p, that is,
the following diagram commutes.

p−1(U) U × F

U

ΦU

p prU

The space E is called the total space andB is called the base space. Since
F is homeomorphic to p−1(b) for each b ∈ B, the fiber might not be mentioned
in contexts where it is clear from the map p.

The maps ΦU indicate that the total space E locally looks like the product
space B × F . Indeed, the projection map prB : B × F → B is a fiber bundle.
This projection map is called the trivial fiber bundle over space B with fiber
F . Hence the maps ΦU are called local trivializations of the fiber bundle p.

Example 4.2. Consider a covering map p : E → B. If B is not connected,
fibers over each point in B might not be homeomorphic to each other. If B is
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connected then p is a fiber bundle. For b ∈ B, choose U to be the evenly covered
neighborhood of b with respect to p; the corresponding local trivialization is
p : p−1(U)→ U × p−1(b) is defined canonically.

Example 4.3. Consider the infinite Möbius stripM , that is, the quotient space
obtained from I × R with the identifications (0, t) ∼ (1,−t). Let C be the sub-
space {[(s, 0)] | s ∈ I} of M and p : M → C be the canonical projection map.
Then p is a continuous surjection with fiber R. The local trivializations are
given by

Φ1 : p−1(U1)→ U1 × R where
U1 = {[(s, 0)] | s ∈ [0, 1/2) ∪ (1/2, 1]} ,

[(s, t)] 7→ ([(s, 0)], t) for s ∈ [0, 1/2) and [(s, t)] 7→ ([(s, 0)],−t) for s ∈ (1/2, 1], and

Φ2 : p−1(U2)→ U2 × I where
U2 = {[(s, 0)] | s ∈ (0, 1)} and

[(s, t)] 7→ ([(s, 0)], t)

Let us examine the behavior of local trivializations closely. Let p be a fiber
bundle with fiber F . Suppose we have two local trivializations Φi and Φj with
domains Ui and Uj respectively. Further let the domains Ui and Uj intersect
non-trivially. Restricting the trivializations to Ui ∩ Uj, we obtain the following
commutative diagram.

(Ui ∩ Uj)× F p−1(Ui ∩ Uj) (Ui ∩ Uj)× F

Ui ∩ Uj

Φi Φj

prjpri
p

Therefore the map Φj ◦Φ−1
i : (Ui ∩Uj)×F → (Ui ∩Uj)×F is a homeomorphism.

It is called a transition map and is denoted by Φji. In case of example 4.3,
transition map Φ21 can be made explicit. We obtain Φ21 : (U1 ∩ U2) × R →
(U1 ∩ U2) × R with ([(s, 0)], t) mapping to itself whenever 0 < s < 1/2, and to
([(s, 0)],−t) whenever 1/2 < s < 1. In this example, we observe that for each
point in U1 ∩ U2, the transition map Φ21 reparametrizes R. Generalizing this
observation, let x̃ ∈ p−1(x) be mapped to (xi, fi) by Φi and to (xj, fj) by Φj. These
trivializations commute with projection maps; therefore xi = xj = x. Thus the
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transition map Φji is identity over the first coordinate. Therefore, for each point
x in Ui ∩Uj, the transition map is a homeomorphism of the fiber as seen in the
following commutative diagram.

{x} × F x̃ {x} × F

x

Φi Φj

prjpri
p

Transition maps are obtained for every pair of trivializations Φi and Φj. For
each transition map Φji, we have the associated map

Φ̃ji : (Ui ∩ Uj)× F → F defined by
(x, f) 7→ Φji(x)(f).

Denoting the group of homeomorphisms of F as Homeo(F ), we reconsider a
transition map Φji : Ui ∩ Uj → Homeo(F ) as a function into Homeo(F ). In this
redefined notion, by continuity of Φji, we mean continuity of the above map Φ̃ji.
The family {Φij} of transition maps satisfies

(i) Φkj ◦ Φji = Φki at each x in Ui ∩ Uj ∩ Uk ,

(ii) Φii is the identity map on F at each x ∈ Ui, and

(iii) Φji has Φij as its inverse at each x in Ui ∩ Uj.

A data satisfying these three conditions is called a cocycle and (i) is called
cocycle condition. In case of example 4.3, the family of transition maps is
isomorphic to Z2.

Example 4.4. Let K denote the Klein bottle obtained as the quotient space
from [0, 1] × [0, 1] by the identifications (s, 0) ∼ (s, 1) for s ∈ [0, 1] and (0, t) ∼
(1, 1 − t) for t ∈ [0, 1]. Let C be the subspace {[(s, 0)] | s ∈ [0, 1]} and p : K → C

be the canonical projection map. Fiber of each point [(s, 0)] under this map is
{[(s, t)] | t ∈ [0, 1]}. Since (s, 0) and (s, 1) are identified together, the fiber of p is,
in fact, S1. The trivializations are given by

Φ1 : p−1(U1)→ U1 × S1 where
U1 = {[(s, 0)] | s ∈ [0, 1/2) ∪ (1/2, 1]} ,

[(s, t)] 7→
(
[(s, 0)], e2πit

)
for s ∈ [0, 1/2) and [(s, t)] 7→

(
[(s, 0)], e−2πit

)
for s ∈ (1/2, 1].
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Φ2 : p−1(U2)→ U2 × S2 where
U2 = {[(s, 0)] | s ∈ (0, 1)} and

[(s, t)] 7→
(
[(s, 0)], e2πit

)
.

The family of transition maps, here too, is isomorphic to Z2.

Of special interest is when the maps Φji parametrize a special class of home-
omorphisms of the fiber F . For instance, if the fiber is a vector space, we would
like to have Φji at each x ∈ Ui ∩ Uj to be a linear isomorphism of the fiber. In
the next section, we will deal with the special case of the fiber being a group
and the maps Φji parametrizing translation maps of this group.

4.2 Principal G-bundles
Let G be a topological group. By default, we will consider right G-actions and
henceforth will refer to them as G-actions.

Definition 4.5. A topological space X is called a G-space if there exists a con-
tinuous group action X ×G→ X.

Example 4.6. Let F be a G-space and B be a topological space. The product
space B × F can be considered as a G-space with G-action given by (b, f)g =

(b, fg) for b ∈ B , f ∈ F and g ∈ G.

Definition 4.7. Let X and Y be G-spaces. A continuous map f : X → Y is
called a G-morphism if f(xg) = f(x)g for x ∈ X and g ∈ G.

G-morphisms, therefore, are natural maps to be considered between G-
spaces.

Definition 4.8. Let G be a topological group. Let p : E → B be a fiber bundle
with fiber F that satisfies the following properties.

(i) The total space E is a G-space with the underlying G-action preserving
fibers, that is, p(xg) = p(x) for x ∈ E and g ∈ G. Considering F ↪−→ G, the
fiber is also a G-space.

(ii) There exists a cover {U} of base space B with local trivializations ΦU :

p−1(U)→ U × F that are G-morphisms.

Then the fiber bundle p is called a principal G-bundle.
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In property (ii), the product U ×F is a G-space with respect to the G-action
(b, f)g = (b, fg) for b ∈ U, f ∈ F and g ∈ G. Since the G-morphisms ΦU are local
trivializations, the group G acts freely and transitively on F . Thus the fiber F
is homeomorphic to G.

Example 4.9. The projection map p : B×G→ B is called the trivial principal
G-bundle over B. The G-action on B ×G is given as (b, h)g = (b, hg) for b ∈ B
and h, g ∈ G. The identity map B ×G→ B ×G is a global trivialization that is
a G-morphism.

Property (ii) of definition 4.8, in view of the above example, says that a
principal G-bundle is locally the trivial principal G-bundle over the base space.

Example 4.10. Consider the n-dimensional real projective space RP n obtained
as the quotient space of Sn under the identifications x ∼ −x for x ∈ Sn. Let
p : Sn → RP n be the projection map that sends each point of Sn to its equiv-
alence class under the above identifications. This map is a covering map. In-
deed, if [(x1, . . . , xn)] ∈ RP n with xi 6= 0 for some 1 ≤ i ≤ n , then the image
set p ({(x1, . . . , xn) ∈ Sn | xi > 0}) is an evenly covered neighborhood containing
[(x1, . . . , xn)]. Therefore p is a fiber bundle whose fiber is homeomorphic to Z2.
Further, the local trivializations of p given in example 4.2 are Z2-morphisms.
Thus p is a principal Z2-bundle.

Example 4.11. A covering space p : (X̃, x̃0) → (X, x0) is normal if and only if
the group G of deck transformations of p acts transitively on the fiber of the
base point x0. Therefore, p becomes a principal G-bundle with G-morphic local
trivializations as given in example 4.2. Consequently, a map p : X̃ → X of
path connected spaces is a principal Z2 bundle if and only if it is a connected
covering map of degree two. Note that the above example is a double covering.
Also, a universal covering map p : X̃ → X is a principal π1(X, x0)-bundle for
x0 ∈ X.

Example 4.12. Consider the n-dimensional complex projective space CP n ob-
tained as the quotient space from the unit sphere S2n+1 ⊂ Cn+1 via the iden-
tifications x ∼ λx for λ ∈ S1 ⊂ C. Let p : S2n+1 → CP n be the projection map
that sends each point (z0, . . . , zn) of S2n+1 to its equivalence class [z0 : · · · : zn]

under the above identifications. Then p is a principal S1-bundle. To see this, con-
sider the sets Ui = {[z0 : · · · : zn] ∈ CP n | zi 6= 0} for i = 0, . . . , n. Since p−1(Ui) =

{(z0, . . . , zn) ∈ S2n+1 | zi 6= 0} is open for each i , the collection {Ui}ni=0 is an open
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cover of CP n. Define Φi : p−1(Ui)→ Ui × S1 as

(z0, . . . , zn) 7→
(

[z0 : · · · : zn],
zi
|zi|

)
.

To see that Φi is a homeomorphism, define the inverse map as

([z0 : · · · : zn], λ) 7→ λ|zi|
(
z0

zi
, . . . ,

zn
zi

)
.

Certainly, the maps Φi are S1-morphisms.

4.3 Bundle morphisms
In this section, we will consider the natural maps between fiber bundles.

Definition 4.13. A bundle morphism between fiber bundles p1 : E1 → B1

and p2 : E2 → B2 is a continuous map f̃ : E1 → E2 such that there exists a
continuous map f : B1 → B2 satisfying p2 ◦ f̃ = f ◦ p1, that is, the following
diagram commutes.

E1 E2

B1 B2

f̃

p1 p2

f

The bundle morphism f̃ is called a bundle isomorphism if f̃ is a homeomor-
phism and (f̃)−1 is a bundle morphism between p2 and p1.

For fiber bundles with same base space, we have the following notion of
bundle morphism.

Definition 4.14. A bundle morphism over B between fiber bundles p1 : E1 →
B and p2 : E2 → B is a continuous map f̃ : E1 → E2 such that p2 ◦ f̃ = p1, that
is, the following diagram commutes.

E1 E2

B

f̃

p1 p2

The bundle morphism f̃ is called a bundle isomorphism over B if f̃ is a
homeomorphism and (f̃)−1 is a bundle morphism over B between p2 and p1.
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Example 4.15. Let p : E → B and p̃ : Ẽ → B̃ be fiber bundles such that E and
B are subspaces of Ẽ and B̃ respectively, and p = p̃|E : E → B. The bundle
morphism between p and p̃ is the inclusion map E ↪−→ Ẽ.

Example 4.16. A deck transformation between two connected covering maps
p1 : (X̃1, x̃1)→ (X, x0) and p2 : (X̃2, x̃2)→ (X, x0) is a bundle isomorphism over
X.

Definition 4.17. A bundle morphism f̃ between principal G-bundles p1 : E1 →
B1 and p2 : E2 → B2 is called a principal G-bundle morphism if f̃ is a G-
morphism. Further, if f̃ is a homeomorphism and (f̃)−1 is a principal G-bundle
morphism between p2 and p1, then f̃ is called a principalG-bundle isomorphism.

Definition 4.18. Let f̃ be a bundle morphism over B between principal G-
bundles p1 : E1 → B1 and p2 : E2 → B2. Then f̃ is called a principal G-bundle
morphism over B if f̃ is a G-morphism. Further, if f̃ is a homeomorphism
and (f̃)−1 is a principal G-bundle morphism over B between p2 and p1, then f̃

is called a principal G-bundle isomorphism over B.

Definition 4.19. Let f : X → B be a continuous map and let p : E → B be
a fiber bundle. The pullback bundle or the induced bundle of p under f
is the fiber bundle prX : f ∗E → X, where the total space f ∗E is the subspace
{(x, e) ∈ X × E | f(x) = p(e)} and prX is the projection map onto X.

Indeed, the pullback bundle is a fiber bundle. Suppose the fiber of p is F .
The fiber of prX over x ∈ X is {x}× p−1(f(x)), which is homeomorphic to F . Let
Φ = (Φ1,Φ2) : p−1(U) → U × F be a local trivialization of p. Then the induced
map Φ∗ : {(x, e) ∈ f ∗E | x ∈ f−1(U)} → f−1(U)× F defined as (x, e) 7→ (x,Φ2(e))

is a local trivialization of prX .

Example 4.20. Let ι : A ↪−→ B be an inclusion map of spaces and p : E → B

be a fiber bundle. Then the induced fiber bundle is prA : ι∗E → A where
ι∗E = {(a, e) ∈ A× E | a = f(e)}. There is a canonical bundle morphism ι̃ such
that the following diagram commutes.

ι∗E E

A B

ι̃

prA p

ι

Let p : E → B be a principal G-bundle and let f : X → B be a continuous
map of topological spaces. Then the pullback bundle prX : f ∗E → X of p is a
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principal G-bundle. For this, define the group action on f ∗E by (x, e)g 7→ (x, eg)

for (x, e) ∈ f ∗E and g ∈ G. This is a well-defined group action that makes
f ∗E into a G-space. Let Φ = (Φ1,Φ2) : p−1(U) → U × F be a G-morphic local
trivialization of the principal bundle p. Since Φ is a G-morphism, Φ2(eg) =

Φ2(e)g for e ∈ p−1(U) and g ∈ G. Then the induced map Φ∗ : {(x, e) ∈ f ∗E | x ∈
f−1(U)} → f−1(U) × F defined as (x, e) 7→ (x,Φ2(e)) is a local trivialization of
prX that is a G-morphism.

Example 4.21. Consider the principal Z2-bundle Sn → RP n, the universal
covering map R → S1 and the principal S1-bundle S2n+1 → CP n. Let X be a
topological space. Then continuous maps X → RP n, X → S1 and X → CP n

result in respective pullback principal G-bundles.
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Chapter 5

Construction of K(G, 1) spaces

In this chapter, we will use construction of universal G-bundles in [Milnor,
1956b] to obtain a space whose first homotopy group is G and higher homotopy
groups are trivial. The construction of universal G-bundles will rely on the
notions of join of spaces and principal G-bundles. Henceforth, join of spaces
will refer to the join of definition 3.13, unless stated otherwise.

5.1 Construction of Universal Bundles

Definition 5.1. A principal G-bundle with the total space (n − 1)-connected
is called an n-universal G-bundle. A principal G-bundle with the total space
∞-connected is called an∞-universal G-bundle.

Let G be a topological group. Denote the join G ◦ · · · ◦G of (n+ 1) copies of
G by EnG. Denote the join of countably infinite copies of G by EG. Each EnG

is a closed subspace of EG. Define the right translations Rn : EnG×G→ EnG

and R : EG×G→ EG by

Rn(t0g0 ⊕ · · · ⊕ tngn, g) = t0(g0g)⊕ · · · ⊕ tn(gng) and
R( ⊕

i∈N0

tigi, g) = ⊕
i∈N0

ti(gig).

Observe that the restricted map R : EnG × G → EnG is equal to Rn. Let BnG

and BG be the G-orbit spaces obtained from EnG and EG respectively. Let
qn : EnG→ BnG and q : EG→ BG be the associated quotient maps that project
a point to its equivalence class. EachBnG is a closed subspace ofBG. The space
BG is called a classifying space of the group G.
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Lemma 5.2. The maps on BnG

Bnθj : [t0g0 ⊕ · · · ⊕ tngn] 7→ tj and
Bnχij : [t0g0 ⊕ · · · ⊕ tngn] 7→ gjg

−1
i

for i, j = 0, . . . , n are continuous on their appropriate domains. The maps on
BG

Bθj : [ ⊕
i∈N0

tigi] 7→ tj and

Bχij : [ ⊕
i∈N0

tigi] 7→ gjg
−1
i

for i, j ∈ N0 are continuous on their appropriate domains.

Proof. We note that the map Bnθj is induced by the coordinate map θj, that is,
the following diagram commutes.

EnG I

BnG

θj

qn
Bnθj

Continuity of Bnθj follows from the fact that θj is an open map. The map Bnχij

is defined at those points with ti and tj non-zero. For i, j = 0, . . . , n, denote the
product of the continuous maps χi and t0g0 ⊕ · · · ⊕ tngn 7→ g−1

j by fij. The map
fij is defined on the intersection of domains of its factors. Thus the map Bnχij

is induced by the map fij , that is the following diagram commutes.

EnG G

BnG

fij

qn
Bnχij

We proceed similarly for the maps Bθj and Bχij, for i, j ∈ N0. �

Lemma 5.3. The spaces EnG and EG are G-spaces. The underlying group ac-
tions preserve fibers under the respective quotient maps qn and q.

Proof. We need to show that Rn and R are continuous maps. The coordinates

52



of the map Rn are

θj ◦Rn : (t0g0 ⊕ · · · ⊕ tngn, g) 7→ tj for j = 0, . . . , n and
χj ◦Rn : (t0g0 ⊕ · · · ⊕ tngn, g) 7→ gjg for j = 0, . . . , n.

The coordinates of the map R are

θj ◦R : (⊕itigi, g) 7→ tj for j ∈ N0 and
χj ◦R : (⊕itigi, g) 7→ gjg for j ∈ N0.

The coordinate θj ◦Rn is the composition (t0g0⊕· · ·⊕tngn, g) 7→ t0g0⊕· · ·⊕tngn 7→
tj of continuous maps. The coordinate χj ◦ Rn is defined at those points of
EnG that have tj non-zero. Hence χj is the product of the continuous maps
(t0g0⊕· · ·⊕tngn, g) 7→ t0g0⊕· · ·⊕tngn 7→ gj and (t0g0⊕· · ·⊕tngn, g) 7→ g. Similarly,
it can be checked that the coordinates of R are continuous. The second part of
the theorem follows from the definitions of qn and q. �

Lemma 5.4. The map qn : EnG→ BnG is an (n− 1)-universal G-bundle.

Proof. We need to exhibit local trivializations of BnG that are G-morphisms.
Let Ui = {[t0g0 ⊕ · · · ⊕ tngn] ∈ BnG | ti 6= 0} for i = 0, . . . , n + 1. Since q−1

n (Ui) is
open for each i, the collection {Ui}ni=0 is an open cover of BnG. Define the local
trivializations Φi : Ui ×G→ q−1

n (Ui) by

Φi ([t0g0 ⊕ · · · ⊕ tngn], g) = t0(g0g
−1
i g)⊕ · · · ⊕ tn(gng

−1
i g)

for i = 0, . . . , n. The maps Φi are well-defined. The coordinates of Φi are the
maps

θj ◦ Φi : ([t0g0 ⊕ · · · ⊕ tngn], g) 7→ tj and
χj ◦ Φi : ([t0g0 ⊕ · · · ⊕ tngn], g) 7→ gjg

−1
i g

for j = 0, . . . , n. It is clear from lemma 5.2 that the coordinates of Φi are
continuous. To show that Φi is a homeomorphism, consider the inverse map
Φ−1
i : q−1

n (Ui)→ Ui ×G defined by

t0g0 ⊕ · · · ⊕ tngn 7→ ([t0g0 ⊕ · · · ⊕ tngn], gi) .

The inverse map Φ−1
i is continuous as each of its components qn and χi are
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continuous on q−1
n (Ui). Evidently, the maps Φi are G-morphisms. Lemma 3.31

gives that the total space EnG is (n− 1)-connected. �

Now we will construct an∞-universalG-bundle for a given topological group
G that will show that a classifying space of the group G exists.

Lemma 5.5. The map q : EG→ BG is an∞-universal G-bundle.

Proof. We proceed as in the proof of the previous theorem.
Let Vi = {[⊕jtjgj] ∈ BG | ti 6= 0} for i ∈ N0. Since each q−1(Vi) is open, the collec-
tion {Vi}i∈N0 is an open cover ofBG. Define the local trivializations Ψi : Vi×G→
q−1(Vi) by

Ψi ([⊕jtjgj], g) = ⊕jtj(gjg−1
i g)

for i ∈ N0. The coordinates of each of the maps Ψi are continuous by lemma 5.2.
To see that Ψi is continuous, consider the inverse map Ψ−1

i : q−1(Vi) → Vi × G
defined by

⊕jtjgj 7→ ([⊕jtjgj], gi) .

It is easy to see that the coordinates of Ψ−1
i are continuous. The maps Ψi are

G-morphisms and it follows from lemma 3.32 that EG is∞-connected. �

5.2 Construction of K(G, 1) spaces
Definition 5.6. LetG be a group with discrete topology. A path connected space
whose fundamental group is G and all other homotopy groups trivial is called
a K(G,1) space.

We have the following result from [Hatcher, 2002] (p. 342).

Lemma 5.7. A covering map (X̃, x̃0) → (X, x0) induces isomorphisms p∗ :

πn(X̃, x̃0)→ πn(X, x0) for n ≥ 2.

Proof. Let n ≥ 2 and (Sn, s0) → (X, x0) be a continuous map. Theorem A.31
gives a lift of this map under p because π1(Sn, ∗) is trivial for n ≥ 2. This shows
that p∗ is surjective. Injectivity of p∗ is ensured by theorem A.26. �

Finally, we have our required result.

Theorem 5.8. Let G be a group with discrete topology. Then there exists a
K(G, 1) space.
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Proof. Consider the construction of an∞-universal G-bundle q : EG→ BG as
in lemma 5.5. Since the group G is discrete, the map q is a universal covering
map. This means that the base space BG has a fundamental group isomorphic
to G. Since the total space has all homotopy groups trivial, it follows from the
above lemma that homotopy groups πn, for n ≥ 2 , of BG are trivial. Therefore,
the base space BG is a K(G, 1) space. �

Also, we have the following corollary as a consequence of lemma 5.7.

Corollary 5.9. Let G be a group with discrete topology. A path connected space
with fundamental group G and a contractible universal covering space is a
K(G, 1) space. �

5.3 Uniqueness of K(G, 1) spaces

Uniqueness of K(G, 1) spaces is guaranteed by the following technical lemma,
quoted from [Hatcher, 2002] (p. 90), whose proof we skip.

Lemma 5.10. LetG be a group with discrete topology. LetX be a connectedCW -
complex and let Y be a K(G, 1) space. Then every homomorphism π1(X, x0) →
π1(Y, y0) is induced by a continuous map f : (X, x0) → (Y, y0). If g : (X, x0) →
(Y, y0) is another continuous map that induces this homomorphism, then there
exists a homotopy X × I → Y between f and g that fixes (x0, t) for t ∈ I.

Theorem 5.11. LetG be a group with discrete topology. Then allK(G, 1) spaces
that are CW -complexes are homotopy equivalent to each other.

Proof. Let (X, x0) and (Y, y0) be two K(G, 1) spaces that are CW -complexes.
Then the isomorphism π1(X, x0) → π1(Y, y0) is induced by a continuous map
f : (X, x0) → (Y, y0) and the isomorphism π1(Y, y0) → π1(X, x0) is induced by
a continuous map g : (Y, y0) → (X, x0). This means, the composition f ◦ g is
homotopic to the identity map on X because it induces the identity isomor-
phism π1(X, x0) → π1(X, x0). Similarly, the composition g ◦ f is homotopic to
the identity map on Y . �

Now we give a CW -complex structure on the total spaces of universal G-
bundles constructed in the first section. The particular case of G being discrete
follows.
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Definition 5.12. Let G be a topological group. If G is a countable CW -complex
with the multiplication map G×G→ G and the inverse map G→ G as cellular
maps, then G is called a CW -group.

We restrict ourselves to the class of countable CW -groupsG. The groupG is
taken to be a countable CW -complex so that the product topology and the weak
topology of CW -complex structure on G × G agree. Let ε denote the identity
element of G. Then the condition on the multiplication map and the inverse
map to be cellular maps forces ε to be in the 0-skeleton G0 of G. With abuse of
notation, let ε also denote the singleton containing ε.

We have the following from [Milnor, 1956b] (p. 435).

Theorem 5.13. Let G be a countable CW -group. Then there exists a countable
CW -complex structure on the spaces EnG,BnG,EG and BG such that the group
actions of EnG and EG are cellular maps.

Proof. We will prove the result for EnG and BnG by induction on n. The CW -
complex structure on E0G = G is the same as that of G. Now consider EnG
as En−1 ◦ G. This can be done because of associativity of joins. The induction
hypothesis is that En−1G is a countable CW -complex with the group action
Rn−1 : En−1G × G → En−1 being a cellular map. Let τ denote a generic cell
of En−1G and its characteristic map be Φτ . Let σ denote a generic cell of G
with the characteristic map Φσ. Then (τ ◦ ε)σ is the set of all right translates
Rn(tx ⊕ (1 − t)ε, g) for x ∈ τ, g ∈ σ and t ∈ [0, 1]. The cell τ is considered as
a cell of EnG by extending the codomain of the characteristic map Φτ to EnG.
Similarly the cell σ is seen as a cell of EnG. If τ is an i-cell and σ is a j-cell, then
(τ ◦ ε)σ is an (i+ j+ 1)-cell of EnG. Indeed, the cell (τ ◦ ε)ε is an (i+ 1)-cell with
the characteristic map Φτ◦ε : Di+1 → EnG defined by

(u, t) 7→ tΦτ (u)⊕ (1− t)ε

for u ∈ Di and t ∈ D1. Then the characteristic map Φ required to consider
(τ ◦ ε)σ as a cell of EnG is the composition Rn ◦ (Φτ◦ε × Φσ).
We observe that an arbitrary point tx⊕ (1− t)g of En−1G ◦G is, in fact, of the
form Rn(t(Rn−1(x, g−1))⊕ (1− t)ε, g). Here if x is in some i-cell of En−1G , then
Rn−1(x, g−1) is in some i-cell too, because of the induction hypothesis that Rn−1

is cellular. Therefore, the above characteristic maps Φ along with Φτ and Φσ

encompass all the points of EnG. Since the multiplication map of G and the
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right translation Rn−1 are cellular maps, it follows that Rn is a cellular map.
Evidently EnG is a countable CW -complex.

Now consider BnG = qn(En−1G ◦ G). Let τ ′ be a generic cell of Bn−1G with
the characteristic map Φτ ′. The cells σ of G in EnG get identified to the point
qn(σ) by the map qn. Further, the cells (τ ◦ ε)σ of EnG get identified to the cell
qn((τ ◦ ε)ε) where τ is a generic cell of EnG. Therefore the cells of BnG are τ ′ ,
the 0-cell qn(σ) , and the cells qn((τ ◦ ε)ε). If τ is an i-cell, then qn((τ ◦ ε)ε) is
an (i + 1)-cell. Denote the characteristic map of (τ ◦ ε)ε , considered as a cell
of EnG , by Φτ◦ε. The map qn is the identity map on the cell (τ ◦ ε)ε. Hence the
characteristic maps of BnG are Φτ ′ , qn ◦ Φτ◦ε and the inclusion map of qn(σ).

Finally, the space EG is a CW -complex structure with weak topology with
respect to the subspaces EnG. Similarly, BG is given the weak topology with
respect to the subspaces BnG. �

It can be shown that the right translations Rn and R are continuous with
respect to weak topology on EnG and EG respectively ([Milnor, 1956b] p. 435).
Also, the maps qn and q are universal G-bundles in this case. However, we will
consider the case of G being a group with discrete topology.

Theorem 5.14. Let G be a group with discrete topology. Then the join topology
and weak topology on EnG agree and the quotient topology and weak topology
on BnG agree. Analogous results hold true for EG and BG.

Proof. Consider EnG = En−1G ◦G. Denote the coordinate functions defined on
En−1G ◦ G onto I, En−1G and G as θ, χ1 and χ2 respectively. Let V be open in
I. Then θ−1(V ) = {tx ⊕ (1 − t)g | x ∈ En−1G, g ∈ G, t ∈ V } = ∪g{tx ⊕ (1 − t)ε |
x ∈ En−1G, t ∈ V } is union of open sets in the weak topology of EnG. Let W be
open in En−1G. Then χ−1(W ) = ∪g{tx⊕ (1− t)ε | x ∈ W, t ∈ I} is open in weak
topology. Finally χ−1(g) = {tx⊕ (1− t)g | x ∈ En−1G, t ∈ I} = ∪g{tx⊕ (1− t)ε |
x ∈ En−1G, t ∈ I} is open in weak topology.

Let Xi denote the ith copy of G, for i ∈ N0. Then, the joins EnG and J(Gi)i≤n

are homeomorphic by theorem 3.28. Considering EnG with product topology, it
is possible to show that open sets in weak topology of EnG are open in product
topology using the standard technique of constructing product neighborhoods
in CW -complexes; refer [Hatcher, 2002] p. 522.

Since qn is a local homeomorphism, we have our result for BnG as well.
Proceed similarly for EG and BG.

�
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5.4 Examples of K(G, 1) spaces
Given a group G with discrete topology, we can find a K(G, 1) space. Each
such space is called a model for K(G, 1), and is unique up to homotopy type,
if the model is a CW -complex. The construction of ∞-universal bundle gives
a particular model of K(G, 1). There are, in fact, other ways of constructing
K(G, 1) spaces. A simplicial model can be found in [Hatcher, 2002] (p. 89). In
practice, there could be a more effective model for K(G, 1) that might not be
provided by these constructions.

Example 5.15. Let G = Z2. Then EnG is Sn−1 and BnG is RP n−1. Therefore,
the total space EG is the infinite sphere S∞ and the base space BG is RP∞.
Therefore RP∞ is a K(Z2, 1) that is unique up to homotopy type. This could
have been obtained from other results as well. It was shown in 2.21 that S∞ is
contractible. Since S∞ is a double cover ofRP∞, it follows thatRP∞ is aK(Z2, 1)

space from 5.7. However, it needs to be checked that the CW -complex structure
on RP∞ in the former case is same as the one in the latter case. Indeed, this is
true because the n-skeletons of both structures are homeomorphic.

Example 5.16. Let G be a free group with discrete topology. Indeed BG is a
K(G, 1) space but there is a more effective model. In chapter 1, it was shown
that there exists a connected graph (X, x0) whose π1(X, x0) is isomorphic to G.
By theoremA.35, there exists a universal cover p : (X̃, x̃0)→ (X, x0). Theorem
1.23 gives that (X̃, x̃0) is a graph. As (X̃, x̃0) is simply connected, it is a tree by
corollary 1.21. Thus X is a K(G, 1) space by corollary 5.9. If G is a countable
free group, then BG and X are homotopy equivalent.

Example 5.17. Let G = Z. Then S1 is a K(Z, 1) by corollary 5.9. Certainly
BZ is a K(Z, 1), albeit an intractable one. However, the space BZ is homotopy
equivalent to S1.

Example 5.18. Let G be S1 with discrete topology. Then, as sets, the total
space EnG is the sphere S2n−1 and EG is S∞. The base space BG is a K(S1, 1).
However, we cannot comment on the uniqueness of this space as S1 is not a
countable CW -group.

5.5 Further notes and references
The assignment G 7→ BG is a functor from the category of topological groups
to the category of topological spaces. The classifying space BG is primarily
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important because there is a bijection between the homotopy classes of maps
X → BG and isomorphism classes of principal G-bundles over a paracompact
Hausdorff space X. We have seen that given a map f : X → BG, the pullback
bundle of f is a principal G-bundle overX. The correspondence says that given
a principal G-bundle p over X, there exists a map φ : X → BG whose pullback
is isomorphic to the given bundle overX. This classifying map φ is unique upto
homotopy. Refer [Husemoller, 1994] for further details.

The S1-action on the infinite sphere S∞, as seen in 2.23 is, in fact, the uni-
versal S1-bundle obtained via Milnor’s construction. The S1-orbit space, called
as the infinite-dimensional complex projective space CP∞, is the classifying
space of S1. Thus CP∞ classifies the principal S1-bundles over a paracompact
Hausdorff space X.
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Appendix A

Background material

A.1 Quotient spaces
This section is compiled from [Armstrong, 1983] and [Munkres, 2000].

Definition A.1. Let X be a topological space, Y be a set and q : X → Y be a
surjective map. Then q is called a quotient map if Y has the largest topology
for which q is continuous. This topology on Y is called the quotient topology
with respect to q.

Therefore, a subset A of Y is in the quotient topology of Y with respect to
q if and only if q−1(A) is open in X. If the map q is clear from the context, the
topology on Y is simply referred to as the quotient topology.

Definition A.2. LetX be a topological space with a partition, that is, the space
X can be written as the disjoint union of subsets Xα for α ∈ Λ. Denote {Xα}α by
X∗ and let q : X → X∗ be the projection map sending each point to the subsetXα

containing it. The quotient space of X with respect to this partition is defined
to be the space X∗ with the quotient topology.

Let an equivalence relation ∼ generate the partition on X. The quotient
space is denoted as X�∼ in such a case. If the equivalence relation ∼ is induced
by a group G acting on X, then X�G is used to denote the quotient space. In
this case, X�G is called the G-orbit space of X. If the equivalence relation ∼
is induced by identifying all points of a subspace A of X, then X�A denotes the
quotient space. In the last case, we say that the quotient space X�A is obtained
by collapsing the subspace A.

Definition A.3. Let f : X → Y be a function of sets. Then the set f−1(y) is
called the fiber of f over y, for y ∈ Y .
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We quote the following theorem from [Munkres, 2000] that is useful for
checking continuity of a map defined on a quotient space.

Theorem A.4. Let q : X → Y be a quotient map. Let Z be a topological space
and let f : X → Z be a function that is constant on each fiber q−1(y), for y ∈ Y .
Then f induces a map h : Y → Z such that h ◦ q = f , that is, the following
diagram commutes.

X

Y Z

f
q

h

The map h is continuous if and only if f is continuous. The map h is a homeo-
morphism if and only if f is a quotient map.

Any quotient map q : X → Y partitions X into the fibers q−1(y) for y ∈ Y .
Let X∗ denote the collection of these fibers with quotient topology with respect
to the the projection map p : X → X∗ as defined in definition A.2. Then we
have the following result from [Armstrong, 1983] as a corollary of the above
theorem.

Corollary A.5. If q : X → Y is a quotient map of topological spaces, then Y is
homeomorphic to X∗.

A.2 Homotopy and fundamental groups
This section is compiled from [Munkres, 2000] and [Hatcher, 2002].

Definition A.6. Let f : X → Y and g : X → Y be continuous maps of topo-
logical spaces. Then f and g are said to be homotopic maps if there exists a
continuous map H : X × I → Y such that H(x, 0) = f(x) and H(x, 1) = g(x).
The map H is called a homotopy of maps f and g.

A map f : X → Y is said to be nullhomotopic if f is homotopic to a constant
map X → Y . Homotopy of maps is an equivalence relation (refer [Munkres,
2000]). We call the equivalence class of the continuous map f as the homotopy
class of f .

Definition A.7. LetX be a topological space and let x0, x1 ∈ X. A path joining
x0 and x1 in X is a continuous map f : I → X such that f(0) = x0 and f(1) = x1.
If every pair of points in X can be joined by a path then X is called a path
connected space.
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Definition A.8. LetX be a topological space. Given x ∈ X and a neighborhood
U of x, if we can find a path connected subset of U containing x, then X is said
to be locally path connected.

Definition A.9. Let f : I → X and g : I → X be two paths in X joining x0 and
x1 in X. Then f and g are said to be path homotopic if there exists a homotopy
H : I × I → X of f and g such that H(0, t) = x0 and H(1, t) = x1. The homotopy
H is called a path homotopy of f and g.

Path homotopy is an equivalence relation (refer [Munkres, 2000]). We call
the equivalence class of the path f as the path homotopy class of f and denote
it by [f ].

Definition A.10. If f : I → X is a path such that f(0) = f(1) = x0, then f is
called a loop based at x0 ∈ X.

Definition A.11. Let f : I → X and g : I → X be two loops based at x0 ∈ X.
The product of loops f and g is the path f ∗ g : I → X defined by

f ∗ g(t) =

f(2t) for t ∈ [0, 1
2
],

g(2t− 1) for t ∈ [1
2
, 1].

Refer [Munkres, 2000] for the proof of the following results.

Theorem A.12. The operation ∗ of product of loops based at x0 in a space X
induces a well-defined operation on path homotopy classes of loops based at x0

in X. We again denote this induced operation by ∗. The set of path homotopy
classes of loops based at x0 is a group with the induced operation ∗. This group
is called the fundamental group of X based at x0, denoted as π1(X, x0).

Theorem A.13. If X is a path connected space, then π1(X, x0) is isomorphic to
π1(X, x1) for x0, x1 ∈ X.

Definition A.14. A path connected space with trivial fundamental group is
called a simply connected space.

If h : X → Y is a map of sets that sends x0 ∈ X to y0 ∈ Y , then we write this
as h : (X, x0)→ (Y, y0).

Definition A.15. Let h : (X, x0)→ (Y, y0) be a continuous map. Then the homo-
morphism h∗ : π1(X, x0)→ π1(Y, y0) defined by h∗([γ]) = [h ◦ γ] for γ ∈ π1(X, x0)

is called the homomorphism of fundamental groups induced by h at x0.

63



Refer [Munkres, 2000] for the following.

Theorem A.16. Let h : (X, x0)→ (Y, y0) be a homeomorphism. Then the homo-
morphism of fundamental groups induced by h at x0 is an isomorphism.

Definition A.17. A continuous map f : X → Y of topological spaces is called a
homotopy equivalence if there exists a continuous map g : Y → X such that
f ◦ g is homotopic to the identity map of X and g ◦ f is homotopic to the identity
map of Y .

Definition A.18. Topological spaces X and Y are said to be homotopy equiv-
alent if there exists a homotopy equivalence between X and Y .

Homotopy equivalence is an equivalence relation on spaces.

Definition A.19. A subspace A ⊂ X is said to be a deformation retract of X
if there exists a homotopy H : X × I → X such that H(x, 0) = x, H(x, 1) ∈ A and
H(a, t) = a for x ∈ X, a ∈ A, t ∈ I. The homotopy H is said to be a deformation
retraction of X onto A.

Definition A.20. A space that is homotopy equivalent to the one-point space is
said to be contractible.

Definition A.21. Let X be a topological space with base point x0. The set of
homotopy classes of maps (Sn, ∗) → (X, x0) is called the nth-homotopy group
of X based at x0, denoted by πn(X, x0).

Definition A.22. Let n be a natural number. A topological space which is non-
empty, path connected and has first n homotopy groups trivial is called an n-
connected space. A space which is n-connected for each n ∈ N is said to be
∞-connected.

Declare, a non-empty space is (−1)-connected. A path connected space is
0-connected.

Refer [Munkres, 2000] for the following.

Theorem A.23. A homotopy equivalence (X, x0) → (Y, y0) induces isomor-
phisms pin(X, x0)→ pin(Y, y0) for n ∈ N.
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A.3 Covering space theory

This section is compiled from [Hatcher, 2002] and [Munkres, 2000].

Definition A.24. Let X and X̃ be topological spaces and p : X̃ → X be a
continuous surjective map. The map p is said to be a covering map if for every
x ∈ X we can find an open neighborhood U of x such that p−1(U) can be written
as disjoint union

∐
α∈Λ Vα of open sets Vα in X̃ each of which is homeomorphic

to U via the map p.

The space X̃ is said to be a covering space of X. By abuse of terminology,
a covering map p : X̃ → X will also be called as a covering space. If X̃ andX are
path connected spaces, the map p : X̃ → X is called a connected covering
space.

Definition A.25. Let X, X̃ and Y be topological spaces. Let p : X̃ → X be a
covering map. A lift of a continuous map f : Y → X under p is defined to be a
continuous map f̃ : Y → X̃ such that p ◦ f̃ = f , that is, the following diagram
commutes.

X̃

Y X

p
f̃

f

The following theorems are from [Hatcher, 2002].

Theorem A.26 (Homotopy lifting property). Let Y be topological space and let
p : X̃ → X be a covering space and f : Y × I → X be a homotopy. If a map
f̃0 : Y → X that is lift of f |Y×{0} is given, then there exists a unique homotopy
f̃ : Y × I → X̃ that is a lift of f . That is, the following diagram commutes.

Y × {0} X̃

Y × I X

f̃0

ι p
f̃

f

Theorem A.27 (Path lifting property). Let p : X̃ → X be a covering space and
let f : I → X be a path. If a point x̃ ∈ p−1(f(0)) is given, then we can find
f̃ : I → X̃ that is a unique lift of f such that f̃(0) = x.
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That is, the following diagram commutes where ι is onto {0} and ι̃ is onto x̃.

∗ X̃

I X

ι̃

ι p
f̃

f

Theorem A.28. Let Y be a connected topological space. Let p : X̃ → X be a
covering space and let f : Y → X be a continuous map with lifts f̃1 : Y → X̃

and f̃2 : Y → X̃ that agree at one point of Y . Then these two lifts are equal at
all points in Y .

Theorem A.29. Let p : (X̃, x̃0)→ (X, x0) be a connected covering map. The in-
duced map p∗ : π1(X̃, x̃0)→ π1(X, x0) is injective. The image subgroup p∗(π1(X̃, x̃0))

in π1(X, x0) consists of the homotopy classes of loops inX based at x0 whose lifts
to X̃ starting at x̃0 are loops.

Theorem A.30. Let p : X̃ → X be a connected covering space. The cardinality of
p−1(x) is constant for x ∈ X and is equal to the index of p∗(π1(X̃, x̃0)) in π1(X, x0).

Theorem A.31. Let p : (X̃, x̃0) → (X, x0) be a covering map and let Y be
a path connected and locally path connected space. Given a continuous map
f : (Y, y0) → (X, x0), there exists a lift f̃ : (Y, y0) → (X̃, x̃0) of f if and only if
f∗(π1(Y, y0)) ⊂ p∗(π1(X̃, x̃0)).

Definition A.32. Two covering spaces p1 : X̃1 → X and p2 : X̃2 → X are said to
be isomorphic covering spaces if there exists a homeomorphism f : X̃1 → X̃2

such that p2 ◦ f = p1, that is the following diagram commutes.

X̃1 X̃2

X

p1

f

p2

The map f is called an isomorphism of covering spaces p1 and p2.

Definition A.33. Let p : (̃X)→ X be a covering map. Then an isomorphism of
the covering space p with itself is called adeck transformation of the covering
space p : X̃ → X.

Definition A.34. Let X be a path connected and locally path connected topo-
logical space. Given x ∈ X, if we can find a neighborhood U containing x such
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that the inclusion map induced homomorphism π1(U, x) → π1(X, x) is trivial,
then X is said to be semilocally simply connected.

Refer [Hatcher, 2002] for the following.

Theorem A.35. Let X be a path connected, locally path connected and semilo-
cally simply connected. Then the set of base point-preserving isomorphism classes
of connected covering spaces p : (X̃, x̃0)→ (X, x0) is in bijective correspondence
with the subgroups of π1(X, x0). The correspondence is obtained by mapping the
connected covering space p : (X̃, x̃0) → (X, x0) to the subgroup p∗(π1(X̃, x̃0))

of π1(X, x0). If base points are ignored, then this mapping gives a bijective
correspondence between the isomorphism classes of connected covering spaces
p : (X̃, x̃0)→ (X, x0) to the conjugacy classes of subgroups of π1(X, x0).
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